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Abstract

A somewhat self-contained exposition of the 2D Coulomb gas is pre-
sented, complete from the Gibbs measure and orthogonal polynomials
to expressions for the one-point intensity and partition functions. For
the model case of the Mittag-Leffler ensemble, some previously known
results on the correlation kernel are reproduced, while for the less well-
known lemniscate ensemble, novel numerical investigations into the one-
point intensity function near 0 are made. Lastly, the logarithm of the
partition function of the Mittag-Leffler ensemble is calculated up to
O(log n), validating earlier more general results by Zabrodin and Wieg-
mann. A correction to the partition function of the corresponding hard
edge ensemble is also derived with the novel result of a previously unseen√
n term in the expansion of logZn.

Throughout this work it has been my firm intention to give reference
to the stated results and credit to the work of others. All theorems,
propositions, lemmas and examples left unmarked are assumed to be too
well-known for a reference to be given.

i





Populärvetenskaplig sammanfattning

Den tv̊adimensionella Coulombgasen best̊ar av en samling repellerande
laddade partiklar som lever i planet och p̊averkas av ett instängande fält
som hindrar gasen fr̊an att upplösas. Om vi ökar antalet partiklar s̊a
kommer de att bli mer och mer obekväma med att vara nära varandra
och det krävs d̊a ett starkare fält för att förhindra att gasen skingras.
Det visar sig att för en ganska bred samling instängningar s̊a kom-
mer gasen att stabiliseras när antalet partiklar g̊ar mot oändligheten
i meningen att nästan alla partiklarna kommer befinna sig i ett visst
begränsat omr̊adet som vi kan tänka oss som en tv̊adimensionell bubbla.
Ett nödvändigt villkor för det är att instängningen skalas tillsammans
med antalet partiklar p̊a s̊a sätt att dubbelt s̊a m̊anga partiklar innebär
dubbelt s̊a stark instängning.

Allmänt s̊a är stora partikelsystem s̊asom detta sv̊ara att lösa exakt s̊a
att man vet var varje partikel befinner sig. Istället försöker vi beskriva
mer statistiska kvantiteter s̊asom hur stor andel av gasen vi förväntar
oss hitta utanför bubblan eller vad den förväntade densiteten hos par-
tiklarna är i en given punkt. För att göra alla kvantiteter mer exakta
och för att undvika att göra n̊agra arbiträra val s̊a l̊ater vi antalet par-
tiklar g̊a mot oändligheten och d̊a har dessa fr̊agor exakta svar.

Medan denna konstruktion kan tyckas vara arbiträr s̊a visar det sig att
sättet som vi beskriver systemet statistiskt inte är unikt för Coulom-
bgasen. Om vi exempelvis tar ett komplext polynom, en funktion av
formen f(z) = zn + an−1z

n−1 + . . . + a1z + a0, och l̊ater koefficien-
terna a0, . . . , an−1 vara normalfördelade s̊a kommer nollställena till f
repellera varandra p̊a ett sätt som liknar gasen. Detsamma är även
sant för egenvärdena hos vissa typer av slumpmatriser.

I detta arbete g̊ar vi igenom mycket klassisk teori kring hur man matem-
atiskt kan hantera dessa typer av system, samt undersöker en del system
mer exakt i hopp om att kunna komma fram till resultat som kan gen-
eraliseras. Med hjälp av numeriska beräkningar bestämmer vi gasens
täthet i ett omr̊ade kring en spetsig kant, n̊agot som ingen har lyckats
lösa exakt matematiskt ännu. Vi undersöker även hur en viss central
statistisk kvantitet ändras när vi inte till̊ater partiklarna att lämna den
tv̊adimensionella bubblan.
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Introduction

There are really two main ways of viewing the 2D Coulomb gas; to the physicist it is the
statistical ensemble of a system of electrons in the plane subject to some confining po-
tential Q which prohibits dispersion while to the statistician, it is a point process on the
complex plane picked with respect to a rather ugly probability measure (depending on a
function Q) which comes up in applications surprisingly often. It is not self-evident from
the setup but as the number of points or particles goes to infinity, the system exhibits
emergent phenomena in that on average the points tend to be distributed in accordance
with some not-too-complicated function. The question is now how we can find and study
such a function.

From the more physical side, the language of potential theory is well suited for this
problem once we consider the charges to be smeared out and the distribution given by
some density function instead of a finite set of points. A classical theorem then gives
a result with great resemblance to Gauss’ law in differential form, ∇ · E = ρ

ε0
, which

gives us a lot of information on the limiting macroscopic distribution of the system. Po-
tential theory does however only tell us things about the limiting behavior and nothing
about the behavior as the number of particles increases. For this, point processes are
more appropriate and since they have been studied for a long time in probability theory,
there are powerful tools available already. Arguably the most powerful such tools is the
one-point intensity function which for any number of points gives the expected density
at some location. As one might guess, determining the one-point intensity function is
highly nontrivial, especially for arbitrary potentials Q.

The goal of this thesis is two-fold; the basic theory leading up to the one-point intensity
function is not very well documented in the literature, something which this thesis aims
to address. Secondly, open and new problems are discussed in Chapters 3 and 4, provid-
ing some new insights and conjectures. Overall the thesis aims to provide a satisfactory
introduction to the 2D Coulomb gas with computations of several important properties
of the system. The reader is expected to have a good grasp of basic concepts from in-
troductory real analysis, complex analysis and linear algebra as well as knowledge about
some basic notions from measure theory, probability theory and Fourier analysis.
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Chapter 1

Theoretical background

1.1 Setup and outline

Fix a potential Q : C → R ∪ {+∞} and consider a random configuration (system,
ensemble, point process) {ζj}nj=1 picked with respect to the probability measure Pn on
Cn which is given by

dPn =
1

Zn
e−Hn dVn, Hn =

∑
i 6=j

log
1

|ζi − ζj |
+ n

n∑
j=1

Q(ζj) (1.1)

where Zn, the partition function, is a constant ensuring Pn(Cn) = 1 and dVn is the
Lebesgue measure on Cn divided by πn. Under suitable conditions on Q (loosely Q(ζ)→
∞ as ζ → ∞), the system will stabilize in the n → ∞ limit in that the points will tend
to occupy only a certain compact set S ⊂ C known as the droplet. An example of this is
shown in the two figures below.

Figure 1.1: Outcomes of the point process with Q(ζ) = |ζ|2 and n = 500, 10 000.

In the above example the droplet is the closed unit disk. When asking questions
about the behavior of the particle distribution, the probably density function of equation
(1.1) is not of much help as it gives the probability for entire systems to occupy certain
states instead of the particle density. To remedy this we can introduce the one-point
intensity function defined as

Rn(ζ) = lim
ε→0

n

ε2
Pn(D(ζ, ε)× Cn−1) = lim

ε→0

E
(
# points in disk centered at ζ of area ε2

)
ε2
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where E is the expectation value with respect to Pn. We mention that the factor n
compensates for the arbitrariness of placing the disk in the first coordinate. It turns out
that the one-point intensity function can be easily obtained from a certain object known
as the correlation kernel which is related to a linear space of weighted polynomials in ζ
with the weight function depending on the potential Q.

It has been shown that n∆Q is a first order estimate of Rn in the interior of the
droplet [3, 25] and similar universality results have recently been obtained for points
where ∆Q > 0 and ∂S is smooth in [26]. In this thesis we therefore probe a point where
∆Q = 0 numerically for which there is no existing framework for determining Rn(ζ).

Outline

In Chapter 1 we develop the required theoretical machinery to probe both local and global
properties of the system. This is in the form of the partition function in Section 1.2 and
the correlation kernel and the associated one-point intensity function in Section 1.3. In
Section 1.4 we review some classical results describing the macroscopic distribution of the
particles. Chapter 2 discusses a family of well understood ensembles and some previous
results are reviewed. In Chapter 3 a less known family of ensembles are discussed and
some novel numerical results are presented. The partition functions of the ensembles
discussed in Chapter 2 are brought up in Chapter 4 where novel results regarding the
expansion of the logarithm of the partition function Zn are presented. Chapters 2, 3 and
4 can for the most part be read in any order.

Notational conventions

Throughout the thesis we identify R2 with C for convenience. The characteristic function
of a set E is denoted by 1E and we work with 1/π of the normal area element so
that dA = 1

π dxdy. We let ∆ denote 1/4 the usual Laplacian so that ∆ = ∂z∂z̄ with
∂z = 1

2(∂x − i∂y), ∂z̄ = 1
2(∂x + i∂y). The open disk of radius r centered at ζ is denoted

by D(ζ, r).

1.2 Problem interpretation and background

The goal of this section is to shed some light on how equation (1.1) can be interpreted
and why it is of interest. We also show how we can rewrite (1.1) as to make it easier to
work with in the upcoming sections. The equation is repeated here for reference.

dPn =
1

Zn
e−Hn dVn, Hn =

∑
i 6=j

log
1

|ζi − ζj |
+ n

n∑
j=1

Q(ζj).

Before continuing further we present some basic preliminaries on statistical mechanics.

1.2.1 Statistical Mechanics

Statistical mechanics is a vast field and we just outline some important ideas used in
this thesis. For a more complete overview, the reader is referred to any undergraduate
textbook on statistical mechanics such as [30] or [19]. In statistical mechanics we drop
the idea of solving equations of motions or considering perturbations to exact relations
and instead consider statistical properties of a system. This because we are not really
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interested in which particles display a certain behavior if we can’t tell the particles apart
in the first place.

One of the most central objects in statistical mechanics is the Gibbs measure which is
a probability measure for the entire system. It depends only on the inverse temperature
β = 1

kBT
and the Hamiltonian H, where kB ≈ 1.4 · 10−23 J/K is the Boltzmann constant

and T is the temperature. Letting Ω denote the space of all possible configurations for
the system and x ∈ Ω a specific configuration we have that the associated probability
density function f is of the form

f(x) =
1

Z
e−βH(x), Z =

∫
Ω
e−βH(x) dx (1.2)

where Z is known as the partition function. In this thesis we only discuss the β = 1 case
for which significantly more powerful mathematical tools are available. We can extract
a lot of useful information from the partition function, especially when we know how it
depends on different parameters such as the temperature or the number of particles.

The final concept we discuss is entropy. To do so, we must first introduce the concept
of microstates which is a specific configuration of a system. Multiple microstates can
correspond to the same macrostate meaning they have the same energy, volume, tem-
perature, etc., but differ only microscopically such as in two particles switching places.
For a system where the probability of finding the system in the i:th microstates is pi, the
Gibbs entropy is defined as

kB
∑
i

pi log
1

pi
. (1.3)

A fundamental postulate of statistical mechanics states that at thermal equilibrium,
meaning that the system has stabilized and there is no heat flow, all microstates are
equally likely. It is then easy to see that the entropy takes the form S = kB log Ω where
Ω is the number of microstates corresponding to the current macrostate.

1.2.2 The 2D Coulomb gas

We begin by noting that there is a striking similarity between (1.1) and (1.2). Indeed,
if we set β = 1 and H = Hn they are identical. From here we try to deduce properties
of a system with Hamiltonian Hn. Such a system must be in equilibrium as there is
no kinetic energy term. We claim that the two sums can be seen as representing the
pairwise Coulomb repulsion and total potential energy of a collection of pointlike charges
in C located at {ζj}nj=1 subject to a potential Q. Indeed, scaling the potential with n
is no issue and as for − log |ζi − ζj | representing the energy associated with two charged
particles at ζi and ζj , the next proposition shows that this is the solution to Poisson’s
equation modulo a factor 1

2 . We remark that this is a well-known proposition which is
included for completion. An alternative proof can be found in e.g. [14].

Proposition 1.2.1. ϕ(z) = 1
2 log |z| solves Poisson’s equation ∆ϕ = δ on C in the

distributional sense.

Proof. Proving the assertion in the distributional sense means that we need to prove that∫
C

∆ log |z| · φ(z) dA(z) = 2φ(0)

3



for all functions φ ∈ C∞ with compact support. Let D be a domain such that suppφ ⊂ D.
Then clearly ∫

C
∆ log |z| · φ(z) dA(z) =

∫
D

∆ log |z| · φ(z) dA(z)

since φ vanishes outside D. Recall Green’s identity which states that∫
E

(u∆v − v∆u) dA =
1

π

∫
∂E

(
u
∂v

∂n
− v ∂u

∂n

)
ds.

Setting E = D, v(z) = log |z| and u = φ we have that∫
D

∆ log |z| · φ(z) dA(z) =

∫
D

log |z| ·∆φ(z) dA(z)

since φ vanishes near ∂D also. Let Dε = D\D(0, ε) be D with a disk of radius ε stamped
out around 0. Then∫

D
log |z| ·∆φ(z) dA(z) = lim

ε→0

∫
Dε

log |z| ·∆φ(z) dA(z). (1.4)

We now turn to computing the right hand side of the above expression. Invoking Green’s
identity again with u(z) = log |z| and v = φ we find∫

Dε

log |z| ·∆φ(z) dA(z) =

∫
Dε

∆ log |z| · φ(z) dA(z)

+
1

π

∫
∂Dε

(
log |z|∂φ(z)

∂n
− φ(z)

∂ log |z|
∂n

)
ds.

We have that log |z| is harmonic in Dε by

∆ log |z| = ∆
1

2
log |z|2 = ∂z∂z̄

1

2
(log z + log z̄) = 0

and so the first integral vanishes. When integrating along ∂Dε, the part along ∂D will
disappear since φ vanishes there. The first term will disappear in the ε → 0 limit as

|z| = ε,
∣∣∣∂φ∂n ∣∣∣ ≤ C for some C ∈ R since φ ∈ C∞ and ε log ε→ 0 as ε→ 0. The normal in

the second term is directed inwards and so we have∫
Dε

log |z| ·∆φ(z) dA(z) =
1

π

1

ε

∫
|z|=ε

φ(z) ds→ 2πε

πε
φ(0) = 2φ(0)

as ε→ 0 as φ is continuous. In view of (1.4), the result follows.

Remark. We say that 1
2 log |z| is the fundamental solution of the Laplace operator in C.

This type of system in known as a 2D Coulomb gas, log gas, one component plasma or
β-ensemble among other names and the scaled potential nQ is referred to as the external
field. Since this type of system can only exist in two dimensions, we can think of it
as being in the cross section of an infinitely long conductor in which forces along the
direction of the conductor cancels out.

An important area where the 2D Coulomb gas is used is Ginzburg-Landau Vortices
which is a type of phenomenon in a model of superconductivity known as Ginzburg-
Landau theory. See e.g. [35] for more on this. For other applications, [1] is an excellent
source.

4



Simulating the gas

Taking the 2D Coulomb gas analogue one step further, we can discard the statistical
mechanics interpretation and simulate a system of n particles with Hamiltonian Hn.
This could be seen as setting β = ∞ although in practice we won’t be able to verify
that our simulation has reached a global minimum when it stabilizes. For high enough
n, we should expect these locally optimal configurations we show high resemblance to an
actual observation of {ζj}nj=1. The four configurations below are all at n = 5000 and the
same scale.

Figure 1.2: Q(ζ) = |ζ|2. Figure 1.3: Q(ζ) = |ζ|4.

Figure 1.4: Q(ζ) = |ζ|4 − 2√
2

Re(ζ2). Figure 1.5: Q(ζ) = |ζ|6 − 2√
5

Re(ζ3).

The potentials in Figures 1.2 and 1.3 will be investigated further in Chapters 2 and
4 and those in Figures 1.4 and 1.5 in Chapter 3.

The code for generating the above figures can be found in [23].

Remark. Global minimizers of the energy are known as weighted Fekete configurations in
the literature.

1.2.3 Random matrices

In random matrix theory, properties of n × n matrices such as their spectra are inves-
tigated. The study of random matrices began in the 1950’s when Wiegner attempted

5



to approximate the Hamiltonian of a heavy nucleus using a random matrix [1]. The 2D
Coulomb gas appears as a natural analogy for random matrices due to the fact that close
relatives to (1.1) appear when endowing a random matrices with a probability measure.
This connection was used early in the development of random matrices, such as in [16].

Recall that a matrix M is said to be normal if MM∗ = M∗M where M∗ denotes the
conjugate transpose of M . Without going into too much detail we state that in normal
matrix models, the probability distribution is of the form

1

Zn
e−nTr(Q(M)) dM, Zn =

∫
e−nTr(Q(M)) dM

where dM is a sort of “volume form” on the space of normal n × n matrices and Tr is
the trace. We need for the matrix to be normal in order for the trace of a function of
the matrix to be well behaved. This can be seen by noting that for any polynomial p we
have

p(M) =
n∑
k=0

ak (UDU∗)k =
n∑
k=0

akUD
kU∗ = U

(
n∑
k=0

akD
k

)
U∗ = Up(D)U∗

where we used that normal matrices can be diagonalized as M = UDU∗ where U is
unitary and D = diag(λk) where λ1, . . . , λn are the eigenvalues of M . In particular,
if M is a n × n normal matrix and Q is any function, we can find a polynomial p of
degree n such that p(λk) = Q(λk) for k = 1, . . . , n. Combining this with the fact that
Tr(AB) = Tr(BA) we find

Tr(Q(M)) = Tr(Q(UDU∗)) = Tr(Q(D)) =
n∑
k=1

Q(λk).

The change of variables to the eigenvalues introduces a Jacobian corresponding to the
factor

∏
i 6=j |λi−λj | in (1.1) [28]. See e.g [12, 17] or [8] and references therein, in particular

[32], for more details on the random normal matrix interpretation.
We finally mention that for the model case of the Ginibre ensemble for which Q(ζ) =

|ζ|2, the 2D Coulomb gas with n particles corresponds exactly to the case of a n×n matrix
where each element is identically and independently distributed according to a complex
Gaussian with variance 1/n [21]. Matrices where the elements are identical independent
random variables are known as Wigner matrices and are of course not normal in general
but it still turns out that we get the eigenvalue distribution of an appropriate normal
matrix in the special Ginibre case. This fact was used to generate Figure 1.1. For more
in general about the connection between random matrices and the 2D Coulomb gas and
classical proofs, see [20].

We emphasize that it is only the β = 1 case which corresponds to the random normal
matrix model.

1.2.4 Vandermonde determinant and the partition function

Our goal of this section is to rewrite (1.1) to make it easier to work with. We begin by
noting that ∑

i 6=j
log

1

|ζi − ζj |
= 2

∑
1≤i<j≤n

log
1

|ζi − ζj |
.

6



Substituting this into (1.1) we have

dPn =
1

Zn
e−Hn(ζ1,...,ζn) dVn =

1

Zn

∏
1≤i<j≤n

|ζj − ζi|2e−n(Q(ζ1)+...+Q(ζn)) dVn

=
1

Zn

∏
1≤i<j≤n

|ζj − ζi|2 dµn(ζ1) · · · dµn(ζn), dµn(ζk) = e−nQ(ζk) dA(ζk). (1.5)

To rewrite the above product we make use of the Vandermonde determinant which is a
well-known tool from linear algebra with the following special property.

Lemma 1.2.2. Given a collection of complex numbers ζ1, ζ2, . . . , ζn we can write

∏
1≤i<j≤n

(ζj − ζi) = detVn, Vn =


1 1 · · · 1
ζ1 ζ2 · · · ζn
ζ2

1 ζ2
2 · · · ζ2

n
...

...
. . .

...

ζn−1
1 ζn−1

2 · · · ζn−1
n

 (1.6)

where Vn is known as a Vandermonde matrix of order n.

Proof. We want the top row and the leftmost column to be all zeros except for the top
left corner where we want to keep the 1. This in order to obtain a (n−1)×(n−1) matrix
of a similar form on which we can perform induction. Subtracting the leftmost column
from all other columns to remove the 1’s we obtain

detVn =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0
ζ1 ζ2 − ζ1 · · · ζn − ζ1

ζ2
1 ζ2

2 − ζ2
1 · · · ζ2

n − ζ2
1

...
...

. . .
...

ζn−1
1 ζn−1

2 − ζn−1
1 · · · ζn−1

n − ζn−1
1

∣∣∣∣∣∣∣∣∣∣∣
.

To clean up the leftmost column, for each row starting at the bottom, we subtract ζ1

times the above row. We are then left with the determinant

detVn =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0
0 ζ2 − ζ1 · · · ζn − ζ1

0 ζ2(ζ2 − ζ1) · · · ζn(ζn − ζ1)
...

...
. . .

...

0 ζn−2
2 (ζ2 − ζ1) · · · ζn−2

n (ζn − ζ1)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
ζ2 − ζ1 · · · ζn − ζ1

ζ2(ζ2 − ζ1) · · · ζn(ζn − ζ1)
...

. . .
...

ζn−2
2 (ζ2 − ζ1) · · · ζn−2

n (ζn − ζ1)

∣∣∣∣∣∣∣∣∣
=

n∏
k=2

(ζk − ζ1)

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
ζ2 ζ3 · · · ζn
...

...
. . .

...

ζn−2
2 ζn−2

3 · · · ζn−2
n

∣∣∣∣∣∣∣∣∣ .
Repeating the procedure for the new determinant we obtain the same result but with ζ1

and k = 2 replaced by ζ2 and k = 3 respectively. Continuing in this fashion we eventually
obtain

n∏
k=2

(ζk − ζ1) ·
n∏
k=3

(ζk − ζ2) · · · (ζn − ζn−1) =
∏

1≤i<j≤n
(ζj − ζi)

as desired.

7



It is now clear that we can write the product as∏
1≤i<j≤n

|ζj − ζi|2 = | detVn|2.

Our next step is to further rewrite the Vandermonde determinant. Consider the inner
product

〈p1, p2〉 =

∫
C
p1(ζ)p2(ζ) dµn(ζ) =

∫
C
p1(ζ)p2(ζ)e−nQ(ζ) dA(ζ), ‖p‖2 = 〈p, p〉 (1.7)

on the space of polynomials of degree strictly less than n. Now let (πk)
n−1
k=0 be monic

orthogonal polynomials with deg πk = k. We will discuss these polynomials further in
Section 1.3.2 and for now present a lemma to rewrite the Vandermonde determinant
using them.

Lemma 1.2.3. Let (πk)
n−1
k=0 be monic orthogonal polynomials with deg πk = k, then the

Vandermonde determinant can be written as

detVn =

∣∣∣∣∣∣∣∣∣
π0(ζ1) π0(ζ2) · · · π0(ζn)
π1(ζ1) π1(ζ2) · · · π1(ζn)

...
...

. . .
...

πn−1(ζ1) πn−1(ζ2) · · · πn−1(ζn)

∣∣∣∣∣∣∣∣∣ . (1.8)

Proof. We start of from the representation in (1.6) and consider the k:th row, 0 < k ≤
n − 1, and let ci be the i:th coefficient of πk. We want the element in the j:th column
to be of the form c0 + c1ζj + c2ζ

2
j + . . . + ck−1ζ

k−1
j + ζkj . Add first the k − 1:th row

scaled as to give ζk−1
j the correct factor ck−1 so that the element becomes of the form

ζkj + ck−1ζ
k−1
j + O(ζk−2

j ). Add then the k − 2:th row scaled as to give ζk−2
j the correct

factor ck−2. Continue in this manner until the row is of the desired format. This can
be done for all rows except for the first one but that is already a monic polynomial of
degree 0 so we are done.

Remark. The above proof works for any set of monic polynomials, not just (πk)
n−1
k=0 . This

setup will however prove useful in the next theorem as well as later on in Lemma 1.3.5.

We now develop an expression for the partition function Zn. Since the partition
function guarantees total probability 1, by (1.5) it must be of the form

Zn =

∫
Cn
| detVn|2 dµn(ζ1) · · · dµn(ζn). (1.9)

The proof of the following theorem is based on that in [32, p. 78].

Theorem 1.2.4. Let Zn denote the partition function and (πk)
n−1
k=0 the monic orthogonal

polynomials. Then

Zn = ‖π0‖2 · ‖π1‖2 · · · ‖πn−1‖2 · n! (1.10)

with norm ‖ · ‖ as in (1.7).
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Proof. We make use of the representation of the Vandermonde determinant from Lemma
1.2.3. From the multilinearity of the determinant it follows that

detVn = det
[
πi−1(ζj)

]n
i,j=1

=
n−1∏
i=0

(
‖πi‖2

)
· det

[
1

‖πi−1‖2
πi−1(ζj)

]n
i,j=1

. (1.11)

We use the Leibniz formula for determinants, see any book on Linear Algebra such as
[27, p. 334] for a proof. Let i ∈ Sn denote a permutation such that i : k 7→ ik and σ(i)
the sign function of permutations taking the values +1 and −1 when the permutation i
is even and odd respectively. Then

| detVn|2 =
∑
i∈Sn

∑
j∈Sn

σ(i)σ(j) · πi1(ζ1) · · ·πin(ζn)πj1(ζ1) · · ·πjn(ζn)

=

n−1∏
i=0

(
‖πi‖2

)
·
∑
i∈Sn

∑
j∈Sn

σ(i)σ(j)

n∏
k=1

1

‖πik‖2
πik(ζk)πjk(ζk)

where the last equality is justified by (1.11). We now integrate this

Zn =

∫
Cn
|detVn|2 dµn(ζ1) · · · dµn(ζn)

=

n−1∏
i=0

(
‖πi‖2

)
·
∑
i∈Sn

∑
j∈Sn

σ(i)σ(j)

n∏
k=1

∫
C

1

‖πik‖2
πik(ζk)πjk(ζk) dµn(ζk)︸ ︷︷ ︸

=δik,jk

where the equality in the underbrace follows from the orthogonality of (πk)
n−1
k=0 . Thus

only the pairs of permutations where ik = jk for all k will survive in the double sum.
These pairs of permutations must be identical and so they have the same parity i.e.
σ(i)σ(j) = 1. We run through these permutations as

∑
k∈Sn and find

Zn =
n−1∏
i=0

‖πi‖2 ·
∑
k∈Sn

n∏
j=1

δkj ,kj =
n−1∏
i=0

‖πi‖2 ·
∑
k∈Sn

1 = ‖π0‖2 · ‖π1‖2 · · · ‖πn−1‖2 · n!

which is what we wished to show.

We will return to the partition function in Chapter 4 and use it to determine some
properties of a certain family of systems for which the squares of the monic polynomials
are easy to calculate.

1.3 Measures and k-point intensity functions

The partition function discussed above will allow us to probe global properties of the
gas but not local behavior. To tackle this we will in this section develop the one-point
intensity function which will give us the density of particles at a point. It will however
take some effort but along the way we will encounter other powerful tools.

Remark. While the discussion in this section by no means contain any original results,
its purpose is to present these standard arguments and theorems in a self contained way
and in one single place. The interested reader is referred to [24, 32, 34] for alternative
presentations.
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1.3.1 Auxiliary measures

The Gibbs measure from (1.5) does not take into account the fact that our particles are
identical and we are therefore doing some undercounting. To counteract this we first
introduce the marginal probability measure Pn,k on Ck as

Pn,k(ω) = Pn(ω × Cn−k)

for k ≤ n and a Borel set ω ⊆ Ck. This is used to define the correlation measure µn,k as

µn,k =
n!

(n− k)!
Pn,k (1.12)

where we recognize that n!
(n−k)! = P (n, k) is the number of permutations of k elements in

a set of size n.

Remark. µn,k is not a probability measure but rather just a positive measure with total
mass µn,k(Ck) = n!

(n−k)! . It is still useful however since we are more interested in answering
questions such as “what is the probability that there are k particles in this set?” rather
than “what is the probability that these specific k particles are in this set?” for which
this measure is better suited.

We are now ready to handle functions which depend on the configuration of the
particles. With the correlation measure we can define a sort of expectation value of a
function X = X(η1, . . . , ηk) as

〈X〉 =

∫
Ck
X(η1, . . . , ηk) dµn,k(η1, . . . , ηk).

In particular, for a fixed ζ, we consider the function χε : C→ R defined as

χε(η) =
1

ε2
1D(ζ,ε)(η), 〈χε〉 =

∫
C
χε(η) dµn,1(η) =

1

ε2

∫
D(ζ,ε)

dµn,1(η) =
µn,1(D(ζ, ε))

ε2
.

Thus 〈χε〉 is the expected number of particles in the disk D(ζ, ε), per unit area. We
remind the reader that with our reduced area element, A(D(ζ, ε)) = ε2. We now let
ε → 0 so that we can speak of the density at a point ζ. We define this important
quantity as the one-point intensity function and write it as

Rn(ζ) = Rn,1(ζ) = lim
ε→0
〈χε〉 = lim

ε→0

µn,1(D(ζ, ε))

ε2
.

This type of density is often referred to as the Janossy density of the point process in
the literature. We use boldface to indicate that the one-point intensity function is not
rescaled. This will be discussed further in Section 1.3.3.

Our next goal is to generalize this to multiple points which will be known as the
k-point intensity function. We fix k points ζ1, . . . , ζk and define

Xk(η1, . . . , ηk) = χζ1ε (η1) · · ·χζkε (ηk), χζε(η) =
1

ε2
1D(ζ,ε)(η).

This appropriately generalizes the earlier χε in that Xk 6= 0 if and only if ζj is near ηj
for j = 1, . . . , k. We can now define

Rn,k(ζ1, . . . ζk) = lim
ε→0
〈Xk〉 = lim

ε→0

µn,k(D(ζ1, ε)× . . .× D(ζk, ε))

ε2k
. (1.13)

This rather unwieldy expression is of interest to calculate. We develop some further
machinery and then present a theorem to simplify it.
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1.3.2 The correlation kernel

Let dµn = e−nQ dA (not to be confused with the correlation measure µn,k) and Wn ⊂
L2(C, µn) be the n dimensional Hilbert space consisting of all square-integrable weighted
polynomials with respect to µn of degree strictly less than n. Then all w ∈ Wn are of the
form w(ζ) = p(ζ)e−nQ(ζ)/2 where p is a polynomial and w1w2 dA = p1p2 dµn. We endow
this space with the usual inner product

〈w1, w2〉 =

∫
C
w1(ζ)w2(ζ) dA(ζ) =

∫
C
p1(ζ)p2(ζ) dµn(ζ)

for w1, w2 ∈ Wn and p1, p2 the corresponding polynomials. Let w0, . . . , wn−1 denote an
orthonormal basis in this space as can be obtained by for example the Gram-Schmidt
process. These orthogonal polynomials will allow us to determine various properties of
the space. We define the correlation kernel Kn as

Kn(ζ, η) = w0(ζ)w0(η) + . . .+ wn−1(ζ)wn−1(η) =
n−1∑
j=0

pj(ζ)pj(η)e−nQ(ζ)/2e−nQ(η)/2

where we note that Kn(ζ, ζ) =
∑n

j=0 |wj(ζ)|2. The correlation kernel can be related to
the k-point intensity function via the following theorem. Its proof is inspired by that in
[24].

Theorem 1.3.1. Let Rn,k denote the k-point intensity function and Kn the correlation
kernel. Then

Rn,k(ζ1, . . . , ζk) = det[Kn(ζi, ζj)]
k
i,j=1. (1.14)

Remark. Point processes with intensity functions of the above form are said to be deter-
minantal point processes. Note again that {ζj}nj=1 is only determinantal in the β = 1
case which is why we were bound to that value for the inverse temperature.

In the case of k = 1 we have the following immediate corollary.

Corollary 1.3.2. The one-point intensity function Rn(ζ) takes the form

Rn(ζ) = Kn(ζ, ζ) =
n−1∑
j=0

|wj(ζ)|2 =
n−1∑
j=0

|pj(ζ)|2e−nQ(ζ).

This explicit formula can be used to calculate the one-point intensity function numer-
ically or by hand by deriving implicit or explicit expressions for the orthogonal polyno-
mials. Before attempting a proof we present and prove three helpful lemmas. This first
lemma detail some additional properties of the correlation kernel.

Lemma 1.3.3 ([34, p. 251]). For the correlation kernel Kn(ζ, η) = w0(ζ)w0(η) + . . . +
wn−1(ζ)wn−1(η) the following properties hold.

(i)

∫
C

Kn(t, ξ)Kn(ξ, s) dA(ξ) = Kn(t, s),

(ii)

∫∫
C2

|Kn(t, s)|2 dA(t) dA(s) = n,

(iii)

∫
C

Kn(t, t) dA(t) = n,

(iv) 〈q,Kn〉 = q for all q ∈ Wn.

11



Proof. For (i), the result follows from a straight forward calculation.∫
C

Kn(t, ξ)Kn(ξ, s) dA(ξ) =
n−1∑
i=0

n−1∑
j=0

wi(t)wj(s)

∫
C
wi(ξ)wj(ξ) dA(ξ) = Kn(t, s).

In proving (ii), we bunch together terms and integrate using the orthogonality relations.∫∫
C2

|Kn(t, s)|2 dA(t) dA(s) =
n−1∑
i=0

∫
C
wi(s)wj(s)

n−1∑
j=0

∫
C
wi(t)wj(t) dA(t) dA(s)

=
n−1∑
i=0

∫
C
wi(s)wi(s) dA(s) = n

where we in the second equality used that only terms where i = j survives. For (iii) we
need only change the order of integration and summation.∫

C
Kn(t, t) dA(t) =

∫
C

n−1∑
i=0

wi(t)wi(t) dA(t) =

n−1∑
i=0

∫
C
wi(t)wi(t) dA(t) = n.

Lastly for (iv), let q(ζ) =
∑n−1

j=0 aiwj(ζ). Then

〈q(ζ),Kn(ζ, η)〉 =

∫
C

n−1∑
i=0

aiwi(ζ)
n−1∑
j=0

wj(ζ)wj(η) dA(ζ) =
n−1∑
i=0

aiwi(η) = q(η).

Remark. Kernels for which property (iv) is valid are said to be reproducing kernels. The
correlation kernel is uniquely determined by it being a reproducing kernel as can be seen
by noting that if K and K′ are reproducing kernels, then〈

q,K−K′
〉

= q − q = 0 for all q ∈ Wn.

This implies that K = K′. See [15] and [7] for more on spaces such as Wn and their
reproducing kernels.

The following lemma will be crucial in proving Theorem 1.3.1. The proof is based on
that of Theorem 5.1.2 in [31, p. 89] and only makes use of some the properties detailed
in the above lemma. It could be generalized to other kernels but we will have no need
for it so we state and prove this special case.

Lemma 1.3.4. Let Kn denote the correlation kernel of Wn. Then∫
C

det[Kn(ζi, ζj)]
k
i,j=1 dA(ζk) = (n− k + 1) det[Kn(ζi, ζj)]

k−1
i,j=1.

Proof. We again use the Leibniz formula for the determinant. Let i ∈ Sn denote a
permutation such that i : k 7→ ik and σ(i) the sign function of permutations taking the
values +1 and −1 when the permutation i is even and odd respectively. Then∫

C
det[Kn(ζi, ζj)]

k
i,j=1 dA(ζk) =

∑
i∈Sn

σ(i)

∫
C

k∏
`=1

Kn(ζi` , ζ`) dA(ζk).
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Integrating this we are looking for cancellations by means of (i) and (iii) of Lemma 1.3.3.
We separate the permutation into two types; the (k − 1)! · 1 terms for which ik = k and
(k − 1)! · (k − 1) terms for which ik 6= k. For the first type, integration will give a factor
n by property (iii) and the remainder of the permutation will have the same parity since
the factor we’ve removed has parity 1 since i : k 7→ k. We can thus write∫
C

det[Kn(ζi, ζj)]
k
i,j=1 dA(ζk) = n · det[Kn(ζi, ζj)]

k−1
i,j=1 +

∑
i∈Sn,
ik 6=k

σ(i)

∫
C

k∏
`=1

Kn(ζi` , ζ`) dA(ζk).

For the (k − 1)! · (k − 1) terms for which ik 6= k there will be a factor of the form
Kn(t, ξ)Kn(ξ, s) which will collapse to Kn(t, s) upon integration by property (i). The
remaining product will have k − 1 terms and reversed parity since ik 6= k. In summary∫

C
det[Kn(ζi, ζj)]

k
i,j=1 dA(ζk) = n · det[Kn(ζi, ζj)]

k−1
i,j=1 − (k − 1) · det[Kn(ζi, ζj)]

k−1
i,j=1

which is what we wished to show.

We now prove a special case of Theorem 1.3.1, namely k = n, which will be the base
case when we prove the general result using induction.

Lemma 1.3.5. Let Rn,n denote the n-point intensity function and Kn the correlation
kernel. Then

Rn,n(ζ1, . . . , ζn) = det[Kn(ζi, ζj)]
n
i,j=1.

Proof. We begin by rewriting (1.8) so that it is expressed in regular weighted orthogonal
polynomials instead of monic unweighted ones. This is easy as wj ∝ πj , ‖wj‖ = 1 =⇒
wj =

πj
‖πj‖e

−nQ/2. We will recover det[Kn(ζi, ζj)]
n
i,j=1 by considering |detVn|2 as the

determinant of a product of matrices. Recall that for any square matrix A, |detA|2 =
det(A∗ ·A) = det(AT · Ā). Setting A = Vn we find

|detVn|2 = det

(
π0(ζ1) π1(ζ1) · · · πn−1(ζ1)
π0(ζ2) π1(ζ2) · · · πn−1(ζ2)

...
...

. . .
...

π0(ζn) π1(ζn) · · · πn−1(ζn)

 ·

π0(ζ1) π0(ζ2) · · · π0(ζn)
π1(ζ1) π1(ζ2) · · · π1(ζn)

...
...

. . .
...

πn−1(ζ1) πn−1(ζ2) · · · πn−1(ζn)


)

=
‖π0‖2 · · · ‖πn−1‖2

e−n(Q(ζ1)+...+Q(ζn))︸ ︷︷ ︸
Scaling πj→wj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
i=0
|wi(ζ1)|2

n−1∑
i=0

wi(ζ1)wi(ζ2) · · ·
n−1∑
i=0

wi(ζ1)wi(ζn)

n−1∑
i=0

wi(ζ2)wi(ζ1)
n−1∑
i=0
|wi(ζ2)|2 · · ·

n−1∑
i=0

wi(ζ2)wi(ζn)

...
...

. . .
...

n−1∑
i=0

wi(ζn)wi(ζ1)
n−1∑
i=0

wi(ζn)wi(ζ2) · · ·
n−1∑
i=0
|wi(ζn)|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
Zn
n!

det[Kn(ζi, ζj)]
n
i,j=1e

n(Q(ζ1)+...+Q(ζn))

where we used Theorem 1.2.4 for the last step. We expand Rn,n using (1.13) and (1.12)
as

Rn,n(ζ1, . . . , ζn) = lim
ε→0

n!

0!

Pn(D(ζ1, ε)× . . .× D(ζn, ε))

ε2n
=

n!

Zn
|detVn|2 · e−n(Q(ζ1)+...+Q(ζn))

where the last equality follows from the continuity of Pn. The desired result follows upon
comparison of the two above equations.
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With this we are able to complete the proof of Theorem 1.3.1.

Proof of Theorem 1.3.1. We use induction on k with k decreasing and k = n as the base
case. Suppose that (1.14) holds for k, i.e.

Rn,k =
n!

(n− k)!
e−n(Q(ζ1)+...+Q(ζk))

∫
Cn−k

| detVn|2 dA(ζk+1) · · · dA(ζn) = det[Kn(ζi, ζj)]
k
i,j=1.

We can now treat the k − 1 case as

Rn,k−1 =
n!

(n− k + 1)!
e−n(Q(ζ1)+...+Q(ζk−1))

∫
C

∫
Cn−k

| detVn|2 dA(ζk+1) · · · dA(ζn)︸ ︷︷ ︸
=

(n−k!)
n!

en(Q(ζ1)+...+Q(ζk)) det[Kn(ζi,ζj)]ki,j=1

dA(ζk)

=
1

n− k + 1

∫
C

det[Kn(ζi, ζj)]
k
i,j=1 dA(ζk) = det[Kn(ζi, ζj)]

k−1
i,j=1.

where we used Lemma 1.3.4 for last step. We conclude that equality holds for k = 1, . . . , n
and so the theorem is proved.

1.3.3 Rescaling correlation kernels

Since we are for the most part interested in the behavior of our system as n → ∞, we
need to zoom at a scale dependent on n in order for certain quantities to converge. When
zooming into a point p a natural scale to rescale at is the scale rn at which

n

∫
D(p,rn)

∆QdA = 1 =⇒ rn ∼
1√

n∆Q(p)
as n→∞. (1.15)

This is because ∆Q is the limiting macroscopic density of particles which is discussed
further in the Section 1.4. For now we may take it for granted. If ∆Q(p) = 0 we say that
p is a singular point and we need to calculate the above integral. We define the rescaled
point process {zj}nj=1 around the point p by

zj = r−1
n (ζj − p).

We determine how the correlation kernel is rescaled by determining the orthogonal poly-
nomials in the rescaled system. Making the ansatz w̃ = C · w where w̃ and w are
orthogonal polynomials in the rescaled system and the original system respectively we
have that dz = r−1

n dζ and

1 = 〈w̃, w̃〉 =

∫
C
w̃(z)w̃(z)e−nQ(z) = C2r−2

n 〈w,w〉 .

We conclude that C = rn and taking non-boldface characters to mean non-rescaled
quantities we have

Kn(z, w) = r2
nKn(ζ, η) =⇒ Rn,k(z1, . . . , zk) = r2k

n Rn,k(ζ1, . . . , ζk). (1.16)

We can state this as Kn is the correlation kernel of {zj}nj=1. For more on rescaling, see
e.g. [5].

14



1.4 The equilibrium measure

In this section we discuss a general result on the distribution of {ζi}ni=1 as n → ∞.
For proofs and a more in-depth discussion we refer the reader to [34]. Let once again
Q : C → R ∪ {+∞} and impose the conditions that Q is lower semi-continuous, real

analytic and lim inf
ζ→∞

Q(ζ)
log |ζ|2 > 1. Such a potential is said to be admissible. For a Borel

probability measure µ on C and such an admissible potential Q, we define the weighted
logarithmic energy IQ as

IQ(µ) =

∫∫
log

1

|ζ − η|
dµ(ζ) dµ(η) + µ(Q).

By a theorem of Frostman, there exists a measure σ, known as the equilibrium measure,
which minimizes this quantity among compactly supported probability measures. We
denote the compact support of σ by S = suppσ and call it the droplet. The theorem
further states that σ takes the form

dσ = ∆Q · 1S dA

and ∆Q ≥ 0 on S. The equilibrium measure is of interest because it is the limiting
behavior of {ζi}ni=1 in the sense that for a bounded continuous function f ,

1

n
E[f(ζ1) + . . .+ f(ζn)]→ σ(f) as n→∞

where E is the expectation value with respect to Pn. The interpretation is that as n
increases, particles will tend to occupy only the droplet with density proportional to
∆Q. As one might guess, ∆Q is intimately connected to the one-point intensity function
and in fact n∆Q is the leading order contribution to R where the factor n is a consequence
of σ being a probability measure [25].

For a compact Σ ⊂ C and a potential Q we say that the energy V of Σ is

V = inf {IQ(µ), µ is a Borel probability measure with suppµ = Σ}

and write cap(Σ) = e−V for the capacity of Σ. A property that holds on C \ Σ for some
Σ with cap(Σ) = 0 is said to hold quasi-everywhere (q.e.).

1.4.1 An alternative characterization of the droplet

The logarithmic potential Uσ associated to the equilibrium measure σ is given by

Uσ(ζ) =

∫
C

log
1

|ζ − t|
dσ(t) =

∫
S

∆Q log
1

|ζ − t|
dA(t).

As hinted by the terminology, this potential will tend to agree with the external potential
Q. Indeed, it turns out that the quantity Q+ 2Uσ assumes a constant minimum γ on S
where γ is known as Robin’s constant while outside of S we have Q+ 2Uσ > γ. We can
form Q̂(ζ) = 2Uσ(ζ) − γ which clearly has the properties Q̂ = Q on S and Q̂ < Q on
C \ S. This next theorem gives a characterization of Q̂ which will allow us to determine
S.

Theorem 1.4.1 ([34, Theorem I.4.1]). Let SH be the set of all subharmonic function
f : C→ R such that f(ζ) ≤ Q(ζ) for all ζ and f(ζ)− log |ζ|2 is bounded as ζ →∞. Then

Q̂(ζ) = sup
f∈SH

f(ζ), q.e.
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Example 1.4.2. Consider the case of Q(ζ) = |ζ|2 − log |ζ|2 which can be seen as the
Ginibre ensemble with a growing repulsive charge of strength n at 0. Since this potential is
radially symmetric we can expect the droplet to take the form of an annulus. Calculating
∆Q is not enough to determine S as

∆Q(ζ) = 1− 2∆ log |z| = 1 for ζ ∈ C \ {0}

is the same density as for Q(ζ) = |ζ|2 apart from at {0}. We instead make use of
Theorem 1.4.1. When forming Q̂ we first consider only the radial harmonic functions
f(r) = a + b log r where b ∈ [0, 2] from the growth condition in the theorem. Forming
D(r) = Q(r)−f(r) = r2−a− (2+b) log r we note that the f ≤ Q condition is equivalent
to D ≥ 0. Fixing some r, we know that r ∈ S if we can fix a, b such that D(r) = 0.
Noting that

0 = D′(r) = 2r − 2 + b

r
=⇒ r = ±

√
2 + b

2

we pick an appropriate a such that this minimum is reached at a point where D(r) = 0.
From the above condition on r we also see that b ∈ [0, 2] corresponds to r ∈ [1,

√
2].

The question is now if there are any function in SH such that Q(r) = Q̂(r) for points
outside r ∈ [1,

√
2]. This cannot be the case as that would imply that

∫
S dσ > 1 since∫

1≤r≤
√

2 dσ = 1 and so S = {ζ ∈ C, 1 ≤ |ζ| ≤
√

2} which we remark is an example of a
droplet which can not be written as S = {ζ ∈ C, Q(ζ) ≤ A} for some A.
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Chapter 2

Correlation kernel of the
Mittag-Leffler ensemble

Now that we have developed the theoretical machinery required to calculate the density
of particles at a point we put it to use by considering some examples. Most of the material
in this chapter has been discussed elsewhere such as [4, 6] and we reproduce and clarify
those discussions somewhat. We also remark that for the boundary case, the result is
just a case of the universal erfc kernel obtained in [26].

Figure 2.1: Unscaled numerical Rn(z) for a collection of Mittag-Leffler ensembles.

We refer to potentials of the form

Q(ζ) = |ζ|2λ − 2c

n
log |ζ|, λ ≥ 0, c > −1

as Mittag-Leffler potentials and ensembles picked with respect to the induced probability
measure as Mittag-Leffler ensembles. The example in Figure 1.1 correspond to the special
case λ = 1, c = 0 which is known as the Ginibre ensemble for historical reasons. The |ζ|2λ
term is just a sufficiently aggressive confining potential (with higher λ corresponding to
more aggressive scaling) while the 2c

n log |ζ| term is equivalent to a fixed inserted point

charge of strength c at 0. Indeed, e−n(−
2c
n

log |ζ|) = |ζ − 0|2c and in view of (1.5) this can
be seen as adding a point ζn+1 at 0 which is unaffected by the external potential, c times.

In this chapter we will calculate the correlation kernel of the Mittag-Leffler ensemble
in the center of the droplet and on its boundary. However for or the boundary case
we will only be able to calculate the correlation kernel of the Ginibre case but we will
examine the situation numerically for higher λ.
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We first determine some properties of the ensembles which will be needed when cal-
culating the correlation kernels.

2.1 Ensemble properties

2.1.1 Determining the droplet

In order to calculate the correlation kernel at the boundary of the droplet we need to
know what the droplet looks like. To do so we will make use of the discussion in Section
1.4, more specifically the fact that σ, dσ = ∆Q · 1S dA is a probability measure which
implies that

∫
C dσ = 1. Since Q is radially symmetric we can assume that the same is

true for S. Since the inserted point charge at 0 is a microscopic perturbation and we are
interested in the macroscopic behavior we can discard it and conclude that the droplet
is a disk and not an annulus since |ζ|2λ has its minimum at ζ = 0. Letting R denote the
radius we have

1 =

∫
S

∆Q(ζ) dA(ζ)λ2

∫
S
|ζ|2λ−2 dA(ζ) =

λ2

π

∫ 2π

0
dθ

∫ R

0
r2λ−1dr = 2λ2R

2λ

2λ
= λR2λ

yielding S = {ζ ∈ C, |ζ| ≤ λ
−1
2λ }. We plot the radius below for reference.

0 1 2 3 4 5

1

1.5

2

2.5

Figure 2.2: Plot of Mittag-Leffler ensemble radius λ
−1
2λ .

For λ ≥ 1, λ
−1
2λ ≤ 1 with equality only at λ = 1. The radius attains its minimum of

≈ 0.83 at λ = e and lim
λ→∞

λ
−1
2λ = 1.

Remark. The different radii can be seen in practice by comparing Figures 1.2 and 1.3.

2.1.2 Scaling factor

Interior

For the interior correlation kernel we consider the point p = 0. Recalling the discussion
in Section 1.3.3 we begin by calculating ∆Q. We can discard the log |ζ| term to avoid
singularities at the origin, partly because of the built in 1

n scaling and partly because we
are more interested in the macroscopic behavior of the system when rescaling. We then
have that ∆Q(ζ) = 2λ|ζ|2λ−2. Since ∆Q(0) = 0 for λ > 1 we consider the integral in
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(1.15). Doing so we obtain

n

∫
D(p,rn)

∆QdA = 1 = 2λ2n

∫ rn

0
r2λ−1 dr = 2nr2λ

n =⇒ rn ∼
(

1

n

) 1
2λ

where we take ∼ to indicate the asymptotic dependence on n meaning we discarded a
factor 1

2
1
2λ

for simplicity.

Boundary

The boundary point ζ = λ
−1
2λ ∈ ∂S is not singular so we can calculate it directly using

the second expression in (1.15) as

rn ∼
1√

n∆Q
(
λ
−1
2λ

) =
1√
n2λ

1
λ

∼ 1√
n
.

2.1.3 Orthogonal polynomials

Generally when calculating correlation kernels, the main difficulty lies in determining the
orthogonal polynomials. The radial symmetry of the Mittag-Leffler potential simplifies
the problem by having the orthogonal polynomials be monomials as we will see in this
next lemma.

Lemma 2.1.1. For Q(ζ) = |ζ|2λ − 2c
n log |ζ| we have

〈
ζj , ζk

〉
= δj,k

Γ
(
k+c+1
λ

)
λn

k+c+1
λ

.

Proof. The integral takes the form∫
C
|ζ|2cζj ζ̄ke−n|ζ|2λ dA(ζ) = δj,k2

∫ ∞
0

r2k+2c+1e−nr
2λ
dr.

Making the substitution t = nr2λ yields

δj,k
1

λn

∫ ∞
0

( t
n

) k+c−λ+1
λ

e−t dt = δj,k
Γ
(
k+c+1
λ

)
λn

k+c+1
λ

which is what we wanted to show.

By the above lemma it is clear that the scalar product of the monomials of differ-
ent degrees is zero and so the monomials are the orthogonal polynomials. Normalizing
appropriately we have

pk(ζ) = ζk

√√√√ λn
k+c+1
λ

Γ
(
k+c+1
λ

) =⇒ pk(ζ)pk(η) = ζkη̄k
λn

k+c+1
λ

Γ
(
k+c+1
λ

) .
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2.2 Interior correlation kernel

We first discuss the correlation kernel at ζ = 0. From the scaling factor discussion above
we have the scaling relations

ζ =
z

n
1
2λ

, η =
w

n
1
2λ

.

Substituting this into (1.16) we have

Kn(z, w) =

(
1

n

) 1
λ
n−1∑
k=0

λn
k+c+1
λ

Γ(k+c+1
λ )

(
z

n
1
2λ

)k ( w̄

n
1
2λ

)k
e
− 1

2
n
∣∣∣ z

n1/2λ

∣∣∣2λ− 1
2
n
∣∣∣ w

n1/2λ

∣∣∣2λ+c log
∣∣∣ z

n1/2λ

∣∣∣+c log
∣∣∣ w

n1/2λ

∣∣∣

= λ|zw|c
n−1∑
k=0

(zw̄)k

Γ(k+c+1
λ )

e−
1
2
|z|2λ− 1

2
|w|2λ −−−→

n→∞
λ|zw|cE 1

λ
, c+1
λ

(zw̄)e−
1
2
|z|2λ− 1

2
|w|2λ

where

Ea,b(z) =
∞∑
j=0

zj

Γ(aj + b)

is known as the two-parametric Mittag-Leffler function. This leads to the limiting one-
point intensity function

R(z) = λ|z|2cE 1
λ
, c+1
λ

(|z|2)e−|z|
2λ
. (2.1)

In the special λ = 1, c = 0 case, the Ginibre ensemble, we get R ≡ 1 which is to be
expected since ∆Q ≡ 1 in a neighborhood of ζ = 0. We can also consider the most basic
case of an inserted point charge, λ = 1, c = 1 for which we obtain

R(z) = |z|2
∞∑
k=0

|z|2k

Γ(k + 2)
e−|z|

2
=
∞∑
k=0

|z|2(k+1)

(k + 1)!
e−|z|

2
= 1− e−|z|2 .

Below we show plots for R(z) for the collection of configurations shown in the legend,
including the two cases discussed above.

Figure 2.3: Numerical R(z) in a neighborhood of z = 0 for a collection of λ and c’s.
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2.3 Boundary correlation kernel

In the boundary case we have the scaling relations

ζ = λ
−1
2λ +

z√
n
, η = λ

−1
2λ +

w√
n
.

Without plugging in the scaling relations we can write the correlation kernel implicitly
as

Kn(z, w) =
1

n

n−1∑
k=0

λn
k+c+1
λ ζkη̄k

Γ(k+c+1
λ )

e−
1
2
n|ζ|2λ− 1

2
n|η|2λ+c log|ζ|+c log|η|. (2.2)

We will not be able to provide an analytical expression for this as in the interior case
except for the Ginibre ensemble configuration (λ = 1, c = 0). We can however investigate
the general situation numerically which we will do in the second subsection.

2.3.1 The Ginibre case

The Ginibre boundary correlation kernel is a well-known result and we follow the pre-
sentation from [4]. Setting λ = 1, c = 0 in (2.2), we find

Kn(z, w) =
n−1∑
j=0

(nζη̄)j

j!
e−λ =

n−1∑
j=0

(
nζη̄

λ

)j λj
j!
e−λ, λ =

n

2

(
|ζ|2 + |η|2

)
.

We now introduce the Poisson distributed random variable Xn with intensity λ = λ(n).
Recall that for a random variable X and a function f the expectation value of f(X) is
written as

E [f(X)] =
∞∑
j=0

P(X = j) · f(j).

Setting f(x) =
(
nζη̄
λ

)x
and X = Xn we thus have

E

[(
nζη̄

λ

)Xn
· 1{Xn<n}

]
=

n−1∑
j=0

P [Xn = j]

(
nζη̄

λ

)j
=

n−1∑
j=0

(
nζη̄

λ

)j λj
j!
e−λ = Kn(z, w).

Next we introduce a new random variable Yn with Xn = λ+
√
λYn. Then

Kn(z, w) =

(
nζη̄

λ

)λ
︸ ︷︷ ︸

=An

·E

[(
nζη̄

λ

)√λYn
· 1{Yn<αn}

]
︸ ︷︷ ︸

=Bn

. (2.3)

Where Xn < n =⇒ λ+
√
λYn < n =⇒ Yn < (n− λ)/

√
λ =: αn. We note that Yn has

mean 0 and variance 1 and so as n→∞ it will converge in distribution to the standard
normal by the central limit theorem.

Proposition 2.3.1.

An = eib
√
n+b2/2G(z, w)(1 + o(1)), Bn → e−b

2/2F (z + w̄) as n→∞

where b = Im(z + w̄),

G(z, w) = ezw̄−|z|
2/2−|w|2/2, F (z) =

1

2
erfc

(
z√
2

)
=

1√
2π

∫ ∞
z

e−ζ
2/2 dζ.
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Proof. First note that λ can be written as

λ =
n

2

(
|ζ|2 + |η|2

)
=
n

2

(
|1 +

z√
n
|2 + |1 +

w√
n
|2
)

=
n

2

(
1 +

2

2
√
n

Re(z) +
|z|2

n
+ 1 +

2

2
√
n

Re(w) +
|w|2

n

)
= n+

√
nc+

1

2

(
|z|2 + |w|2

)
(2.4)

where c = Re(z + w). We then have that

nζη̄

λ
=

(1 + z√
n

)(1 + w̄√
n

)

1 + 1√
n

Re(z + w) + 1
2n(|z|2 + |w|2)

.

To expand this in n, we first recall that (1 + ε)−1 = 1 − ε + ε2 + O(ε3). Then with the
above denominator being expanded we have that O(ε) = O( 1√

n
) and so

nζη̄

λ
= (1 +

z√
n

)(1 +
w̄√
n

)

(
1− Re(z + w)√

n
− |z|

2 + |w|2

2n
+

(Re(z + w))2

n

)
+O(n−3/2)

= 1 +
1√
n

(
z + w̄ − Re(z + w)

)
+

1

n
a+O(n−3/2) (2.5)

where a = −1
2 (|z|2 + |w|2) + (Re(z+w))2 + zw̄− (z+ w̄) Re(z+w). Writing z = z1 + iz2

and w = w1 + iw2 with z1, z2, w1, w2 ∈ R, the coefficient for the 1√
n

term can be written
as

z + w̄ − Re(z + w) = z1 + iz2 + w1 − iw2 − z1 − w1 = i(z2 − w2) = i Im(z + w̄) = ib.

Returning to equation (2.3), we first wish to determine the limit of An as n→∞. This
is done by using the asymptotics of (2.4) and (2.5) as

An =

(
1 +

ib√
n

+
a

n
+O(n−3/2)

)n+
√
nc+O(1)

.

We look at the asymptotic behavior of logAn for simplicity and infer the asymptotic
behavior of An. Recall that log(1 + ε) = ε− ε2

2 +O(ε3) for small ε.

logAn =
(
n+ c

√
n+O(1)

)
log

(
1 +

ib√
n

+
a

n
+O(n−3/2)

)
=
(
n+ c

√
n+O(1)

)( ib√
n

+
a

n
+
b2

2n
+O(n−3/2)

)
= ib
√
n+ ibc+ a+

b2

2
+O

(
1√
n

)
=⇒ An = eib

√
n+b2/2+ibc+a+o(1).

The term ibc+ a can be simplified as follows

ibc+ a = i Im(z + w̄) Re(z + w)− 1

2
(|z|2 + |w|2) + (Re(z + w))2 + zw̄ − (z + w̄) Re(z + w)

= zw̄ − 1

2
(|z|2 + |w|2) + Re(z + w)

[
Re(z + w) + i Im(z + w̄)− (z + w̄)

]
= zw̄ − 1

2
(|z|2 + |w|2)
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where we in the last step used that Re(z + w) = Re(z + w̄). We can now write An as

An = eib
√
neb

2/2G(z, w)(1 + o(1))

since eo(1) = 1+o(1). The next step is to compute Bn as n→∞. Recall that Yn converges

to the standard normal so the probability density function is of the form 1√
2π
e−

t2

2 . We

will also use that αn = (n−λ)/
√
λ→ −Re(z+w) and that

√
λ behaves as

√
n as n→∞

as is clear from (2.4). Taking ∼ to mean asymptotic equality as n→∞ we have

E

[(
nζη̄

λ

)√λYn
· 1{Yn<αn}

]
∼ 1√

2π

∫ αn

−∞

(
1 +

i√
n

Im(z + w̄) +O

(
1

n

))√nt
e−

t2

2 dt

∼ 1√
2π

∫ −Re(z+w̄)

−∞
ei Im(z+w̄)te−

t2

2 dt = I.

To compute the last integral we will need to complete the square in the exponent. We
have ibt− t2/2 = −b2/2− (ib− t)2/2. The substitution ζ = ib− t =⇒ dt = −dζ yields

I =
−e−b2/2√

2π

∫ i Im(z+w̄)−(−Re(z+w̄))

∞
e−ζ

2/2 dζ =
e−b

2

√
2π

∫ ∞
z+w̄

e−ζ
2/2 dζ,

completing the proof.

We conclude that limiting correlation kernel and the associated one-point intensity
function are of the form

Kn(z, w) = ei Im(z+w̄)
√
nG(z, w)F (z + w̄)(1 + o(1))

=⇒ R(z) = F (2 Re(z)) =
1

2
erfc

(√
2 Re(z)

)
(2.6)

which is in agreement with the universal result obtained in [26]. Note that the one-
point intensity function is symmetric with respect to translation in the direction of the
imaginary axis. This is to be expected from the fact that as zooming in to a point on the
boundary of a disk, the edge becomes increasingly straight. We plot the function below.

−1 0 1

0

0.2

0.4

0.6

0.8

1

Figure 2.4: R(Re(z)) at the boundary of the Ginibre ensemble.

From the plot we conclude that the majority of the decay at the edge happens within
Re(z) ∈ (−1, 1) which corresponds to a width of approximately 2√

n
.
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2.3.2 Numerical one-point intensity function

We can also calculate (2.2) numerically at the boundary for different λ. Changing c does
not affect the behavior at ∂S as n→∞ so we only show c = 0 below.

Figure 2.5: Numerical Rn(z) for a collection of λ’s with n = 40 000.

We note that higher λ, higher n was required in order to make the leftmost part of
the plot flat due to the fact that ∆Q is more aggressive near the boundary for higher
λ. The different scales is a direct result of us discarding the factor 1√

2λ1/λ
in rn. Other

then that we seem to have recovered the erfc behavior as was to be expected from the
universal result in [26].
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Chapter 3

One-point intensity function of
the lemniscate ensemble

Consider the case of the lemniscate ensemble which is characterized by

Q(ζ) = |ζ|2k − 2k−1/2 Re(ζk) =

∣∣∣∣ζk − 1√
k

∣∣∣∣2 − 1

k
. (3.1)

Note that this potential is of the form Q(ζ) = Q0(ζ) + h(ζ) where h is harmonic so this
can be seen as a sort of perturbation of the Mittag-Leffler ensemble with the same ∆Q.
It turns out that the droplet takes the form S = {ζ ∈ C, Q(ζ) ≤ 0} which we will show in
Section 3.1. This shape is known as a lemniscate and is illustrated for different k below.

Figure 3.1: The lemniscate ensemble droplet for k = 2, 5.

We wish to determine the rescaled one-point intensity function R in a neighborhood
of 0. This problem was discussed briefly in [5] while in [11] asymptotic properties of the
associated orthogonal polynomials were investigated. While we will not be able to settle
the question here, we do obtain partial results and a good approximation which will be
interesting to compare to future results.

Recall from (1.16) and (1.15) that the rescaled one-point intensity function and the
criteria for the microscopic scale is given by

Rn(ζ) = r2
n

n−1∑
j=0

|pj(ζ)|2e−nQ(ζ), n

∫
D(p,rn)

∆QdA = 1. (3.2)
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We calculate ∆Q = k2|ζ|2k−2 and note that p = 0 is a singular point i.e. ∆Q(0) = 0.
When computing the integral defining rn we are not really looking for a specific value
but rather determining how rn depends on n. We therefore make the simplification of
incorrectly assuming D(0, rn) ⊂ S since that only changes the result by a factor of 2.

1 = n

∫
D(0,rn)

k2|ζ|2k−2 dA = 2n

∫ rn

0
r2k−1dr = 2n

r2k
n

2k
=⇒ rn =

(
k

n

)1/2k

.

We also discard the factor k1/2k as it is independent of n, leaving us with rn = n−1/2k.

Heuristic arguments for the behavior of R(z)

Before proceeding and attempting to construct the orthogonal polynomials we can make
an educated guess as to how R(z) should behave. Since the dominating term in the
lemniscate potential is |ζ|2k which we recall from the Mittag-Leffler potential, we might
guess that the one-point intensity function shares similarities with the one in Section 2.2
with c = 0. From [26] we know that along the straight lines of the lemniscate we should
obtain the same erfc behavior as along the Ginibre ensemble edge (see Section 2.3.1).
With this in mind we can guess that the k = 2 one-point intensity should be similar to

R̂(z) =
1

2
erfc

(√
2 Re(z2)

)
︸ ︷︷ ︸

Generalization of eq. (2.6)

· 2E 1
2
, 1
2
(|z|2)e−|z|

4︸ ︷︷ ︸
Eq.(2.1)

(3.3)

where the Re(z2) in erfc is only positive in the two sectors {−π4 < arg(z) < π
4 } and

{3π
4 < arg(z) < 5π

4 } which is what we want. For larger k, we could change the erfc
argument to target the correct sectors as well as use (2.1) with higher k.

Since this mainly accounts for the behavior very near 0 and at infinity, we should not
expect this to be completely correct but we can still compare it to numerical results for
verification and possible clues regarding future modifications.

3.1 Determining the droplet

We present some general arguments on a sort of potential with rotational symmetry. This
will be partly done in the language of potential theory so we assume that the reader has
read Section 1.4 and refer to [34] for more background.

Following [9], we introduce the d-fold rotated measure µ(d) as

µ(d) =
1

d

d−1∑
k=0

µ
(d)
k , µ

(d)
k (B) = µ

(
ϕ−1(B ∩ Sk)

)
where

Sk =

{
ζ ∈ C,

2πk

d
≤ arg ζ <

2π(k + 1)

d

}
, k = 0, . . . , d− 1

is the k:th sector out of d sectors of C and ϕk : C→ Sk, re
iθ 7→ r

1
d e

iθ
d e

2πik
d . From this we

can see that ζ ∈ suppµ(d) ⇐⇒ ζd ∈ suppµ. Recall from Section 1.4 that the logarithmic
potential Uµ of a measure µ is defined as

Uµ(ζ) =

∫
log

1

|ζ − η|
dµ(η).
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Lemma 3.1.1 ([9], Proposition 1). The d-fold rotated measure µ(d) of the measure µ has
the logarithmic potential

Uµ
(d)

(ζ) =
1

d
Uµ(ζd).

Proof. Substituting the definition of the d-fold rotated measure directly into the definition
of the logarithmic potential we have

Uµ
(d)

(ζ) =

∫
C

log
1

|ζ − η|
dµ(d)(η) =

1

d

d−1∑
k=0

∫
C

log
1

|ζ − η|
dµ

(d)
k (η).

Next we note from the B ∩ Sk in the definition of µ
(d)
k that we can instead write

Uµ
(d)

(ζ) =
1

d

d−1∑
k=0

∫
Sk

log
1

|ζ − η|
dµ

(d)
k (η)

since the Sk’s are pairwise disjoint. Working backwards from the definition of µ
(d)
k we

see that

Uµ
(d)

(ζ) =
1

d

d−1∑
k=0

∫
C

log
1

|ζ − ϕk(η)|
dµ(η) =

1

d

∫
C

d−1∑
k=0

log
1

|ζ − ϕk(η)|
dµ(η).

In an effort to remove the sum we note that we can exchange it for a product which we
move inside the logarithm. The next step is to show that

d−1∏
k=0

(ζ − ϕk(η)) = ζd − η.

If we consider the above expression as a function of ζ with zeros at ϕk(η) for some η it
is easy to see that the function must be a monic polynomial in ζ of degree d. Since the
function ζd − η has zeros exactly at ϕk(η) since (ϕk(η))d = η for all k, this must be the
polynomial and we are done. Returning to the logarithmic potential we have

Uµ
(d)

(ζ) =
1

d

∫
C

log
1

|ζd − η|
dµ(η) =

1

d
Uµ(ζd)

as was to be shown.

Armed with the above lemma, we are ready to prove the following proposition.

Proposition 3.1.2 ([9], Lemma 1). If the admissible potential Q(ζ) can be written in
terms of another admissible potential V (ζ) as

Q(ζ) =
1

d
V (ζd) (3.4)

for some integer d, then the equilibrium measure for Q is given by the d-fold rotated
equilibrium measure of V , i.e.

µQ = µ
(d)
V .
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Proof. Let µV denote the equilibrium measure of V (ζ) and recall that from Section 1.4.1
that it is uniquely characterized by the inequalities

V (ζ) + 2UµV (ζ) = γ ζ ∈ suppµV q.e.,

V (ζ) + 2UµV (ζ) ≥ γ ζ 6∈ suppµV q.e.

where γ is known as Robin’s constant and we recall that q.e. means that the exceptional
set is of capacity zero. Exchanging ζ for ζd in the above expressions yields

V (ζd) + 2UµV (ζd) = γ ζd ∈ suppµV q.e.,

V (ζd) + 2UµV (ζd) ≥ γ ζd 6∈ suppµV q.e.

From the earlier proposition we have that Uµ(ζd) = d · Uµ(d)(ζ). Combining this with
the relation V (ζd) = d ·Q(ζ) we find

Q(ζ) + 2Uµ
(d)
V (ζ) =

γ

d
ζ ∈ suppµ

(d)
V q.e.,

Q(ζ) + 2Uµ
(d)
V (ζ) ≥ γ

d
ζ 6∈ suppµ

(d)
V q.e.

where we used that ζ ∈ suppµ(d) ⇐⇒ ζd ∈ suppµ. The quantity γ
d can now be seen as

the Robin’s constant for µ
(d)
V = µQ.

Returning to (3.1), we note that we can write

Q(ζ) =

∣∣∣∣ζk − 1√
k

∣∣∣∣2 − 1

k
=

1

k
V (ζk), V (ζ) = k

∣∣∣∣ζ − 1√
k

∣∣∣∣2 − 1.

Our first observation is that the potential V is that of a transformed Ginibre ensemble.
The −1 term can be discarded and the 1√

k
term corresponds to having the ensemble be

centered at ζ = 1√
k

while the k factor can be seen as shrinking the area by a factor 1
k .

Since the Ginibre droplet has radius 1 this means that the support of µV is the circle

centered at ζ = 1√
k

of radius 1√
k

i.e.

{
ζ ∈ C,

∣∣∣ζ − 1√
k

∣∣∣2 ≤ 1
k

}
.

It is now clear that the lemniscate droplet is the support of the k-fold rotated measure

µ
(d)
V . Recall that ζ ∈ suppµ(d) ⇐⇒ ζd ∈ suppµ. Thus letting S denote the lemniscate

droplet we have

ζ ∈ S ⇐⇒ ζk ∈ suppµV ⇐⇒
∣∣∣∣ζk − 1√

k

∣∣∣∣2 − 1

k
≤ 0 ⇐⇒ Q(ζ) ≤ 0

as promised.

Remark. Recall from the remark in Example 1.4.2 that not all droplets can be written
as {ζ ∈ C, Q(ζ) ≤ A} for some A so there is no clear shortcut that we could have used
to reach the above result.

3.2 Implicitly constructing orthogonal polynomials

Recall from Section 1.3.2 that the orthogonal polynomials which we are interested in are
orthogonal with respect to the scalar product

〈p1, p2〉 =

∫
C
p1(ζ)p2(ζ)e−nQ(ζ) dA(ζ).
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The method which we will detail in this section is equivalent to the Gram-Schmidt process
but is written more compactly as a determinant. We will need to use that the inner
product of monomials is symmetric. We prove this as a part of the proposition below
which will be useful later.

Proposition 3.2.1. If i 6≡ j ( mod k) then
〈
ζi, ζj

〉
= 0, otherwise

〈
ζi, ζj

〉
=

Γ
(
i+1
k

)
Γ( i−jk + 1)

1

n
1+j
k k

i−j
2k

+1
1F1

( i+ 1

k
,
i− j
k

+ 1,
n

k

)
, i ≡ j ( mod k)

where 1F1 is the Kummer confluent hypergeometric function which is defined as

1F1(a, b, z) =

∞∑
m=0

(a)mz
m

(b)mm!
, (a)n =

Γ(a+ n)

Γ(a)

where (a)n is known as the Pochhammer symbol. Furthermore, the inner product is
symmetric i.e.

〈p, q〉 = 〈q, p〉 , p, q ∈ Wn.

In particular, the inner product is symmetric for monomials.

Proof. We begin by rewriting the potential to make it easier to deal with

Q(ζ) = |ζ|2k − 2k−1/2 Re(ζk) = |ζ|2k − 1√
k

(ζk + ζ̄k).

The scalar product can then be written as〈
ζi, ζj

〉
=

∫
C
ζiζ̄j exp(−n

[
|ζ|2k − 1√

k
(ζk + ζ̄k)

]
) dA(ζ).

Replacing the two exp(ζk) terms with their respective Taylor series we obtain

〈
ζi, ζj

〉
=

∞∑
m,l=0

∫
C

(nζ
k
√
k

)m (nζ̄
k
√
k

)l

m! l!
ζiζ̄je−n|ζ|

2k
dA(ζ)

=
∞∑

m,l=0

( n√
k
)m+l

m! l!

∫
C
ζi+kmζ̄j+kle−n|ζ|

2k
dA(ζ).

Let Ii,j,m,l denote the above integral, α = min(i+ km, j + kl) and β = max(i+ km, j +
kl)− α. Then

Ii,j,m,l =

∫
C
|ζ|2αζ̃βe−n|ζ|2k dA(ζ)

where ζ̃ = ζ if i + km > j + kl and ζ̄ if i + km < j + kl. Note that in the equality
case β = 0 we do not have to consider ζ̃. Switching to polar coordinates we have
ζ = reiθ, dA(ζ) = rdrdθ

π . Thus

Ii,j,m,l =
1

π

∫ 2π

0
e±iβθdθ

∫ ∞
0

r2α+β+1e−nr
2k
dr

29



where the ± depends on if i + km is larger than j + kl. The first integral will only be
nonzero only if β = 0 which corresponds to i ≡ j (mod k). Hence the first assertion of
the proposition follows.

We can relate l and m to switch to a single sum as l = i−j
k + m. We assume that

i ≥ j and start m at m = 0. The scalar product can then be written as

〈
ζi, ζj

〉
=
∞∑
m=0

( n√
k
)2m+ i−j

k

m! (m+ i−j
k )!

Ii,j,m,m+ i−j
k
.

Putting β = 0 and writing out α again we can compute the integral with the substitutions
t = r2k and s = nt as

Ii,j,m,m+ i−j
k

= 2

∫ ∞
0

r2i+2km+1e−nr
2k
dr =

1

k

∫ ∞
0

t
i+k(m−1)+1

k e−nt dt

=
1

kn

∫ ∞
0

( s
n

) i+k(m−1)+1
k

e−sds =
1

kn
i+km+1

k

Γ
( i+ km+ 1

k

)
yielding

〈
ζi, ζj

〉
=

∞∑
m=0

( n√
k
)2m+ i−j

k

m! (m+ i−j
k )!

1

kn
i+km+1

k

Γ
( i+ km+ 1

k

)
.

Writing a = i+1
k , b = i−j

k we have

∞∑
m=0

nmnbΓ(a+m)

m!(m+ b)!kkmkb/2na
= C

∞∑
m=0

Γ(a+m)
(
n
k

)m
Γ(m+ b+ 1)m!

where we have collected factors independent of m in the factor C. With this we can get
our final expression for the inner product as

C
∞∑
m=0

Γ(a+m)
(
n
k

)m
Γ(m+ b+ 1)m!

= C
Γ(a)

Γ(b+ 1)

∞∑
m=0

(a)m
(
n
k

)m
(b+ 1)mm!

= C
Γ(a)

Γ(b+ 1)
1F1

(
a, b+ 1,

n

k

)
=

Γ
(
i+1
k

)
Γ( i−jk + 1)

1

n
1+j
k k

i−j
2k

+1
1F1

( i+ 1

k
,
i− j
k

+ 1,
n

k

)
which is what we wished to show.

For symmetry of the inner product we begin by noting that is suffices to show sym-
metry for monic monomials since the inner product for any two polynomials p, q can be
written as

〈p, q〉 =

〈
n∑
i=0

aiζ
i,

m∑
j=0

bjζ
j

〉
=

n∑
i=0

m∑
j=0

aibj
〈
ζi, ζj

〉
. (3.5)

In general we have that
〈
ζi, ζj

〉
= 〈ζj , ζi〉 and since

〈
ζi, ζj

〉
turned out to be real for

i ≥ j we must conclude that it is also real for j ≥ i from which the desired conclusion
follows.
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We now return to constructing orthogonal polynomials. Our goal is to derive an
explicit expression for each basis polynomial. To this end we define

Dj(z) =

∣∣∣∣∣∣∣∣∣∣∣

〈
z0, z0

〉 〈
z0, z1

〉
· · ·

〈
z0, zj

〉〈
z1, z0

〉 〈
z1, z1

〉
· · ·

〈
z1, zj

〉
...

...
. . .

...〈
zj−1, z0

〉 〈
zj−1, z1

〉
· · ·

〈
zj−1, zj

〉
1 z · · · zj

∣∣∣∣∣∣∣∣∣∣∣
(3.6)

and

Dj =

∣∣∣∣∣∣∣∣∣∣∣

〈
z0, z0

〉 〈
z0, z1

〉
· · ·

〈
z0, zj

〉〈
z1, z0

〉 〈
z1, z1

〉
· · ·

〈
z1, zj

〉
...

...
. . .

...〈
zj−1, z0

〉 〈
zj−1, z1

〉
· · ·

〈
zj−1, zj

〉〈
zj , z0

〉 〈
zj , z1

〉
· · ·

〈
zj , zj

〉

∣∣∣∣∣∣∣∣∣∣∣
. (3.7)

We now turn to proving the following proposition.

Proposition 3.2.2.

{
Dj(z)√
Dj−1Dj

}n−1

j=0

constitutes an orthonormal basis for Wn.

Proof. We begin by claiming that
〈
zi, Dj(z)

〉
= 0 for i < j. Indeed, Dj(z) is a

polynomial of degree j as can be see from expanding the determinant for Dj(z) as

Dj(z) =
∑j

m=0 cmz
m where cm is the determinant of an appropriate minor of the matrix.

Now for i < j

〈
zi, Dj(z)

〉
=

〈
zi,

j∑
m=0

cmz
m

〉
=

j∑
m=0

cm
〈
zi, zm

〉

=

∣∣∣∣∣∣∣∣∣∣∣

〈
z0, z0

〉 〈
z0, z1

〉
· · ·

〈
z0, zj

〉〈
z1, z0

〉 〈
z1, z1

〉
· · ·

〈
z1, zj

〉
...

...
. . .

...〈
zj−1, z0

〉 〈
zj−1, z1

〉
· · ·

〈
zj−1, zj

〉〈
zi, z0

〉 〈
zi, z1

〉
· · ·

〈
zi, zj

〉

∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.8)

where the last equality is guaranteed by the i < j condition which implies that two of
the rows of the determinant must be the equal. All that is left now is to appropriately
normalize the Dj(z)’s. When expanding ‖Dj(z) = 〈Dj(z), Dj(z)〉, the only term which
will make a contribution is the last one. From (3.6) and (3.7) we see that the coefficient
in front of zj for Dj(z) will be Dj−1. Writing this out we see that

〈Dj(z), Dj(z)〉 = Dj−1

〈
zj , Dj(z)

〉
= Dj−1

j∑
m=0

cm
〈
zj , zm

〉
= Dj−1Dj (3.9)

where we in the last step recognized (3.7). The desired result now follows.
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We summarize the above results below

Rn(ζ) = n−1/k
n−1∑
j=0

|pj(ζ)|2e−nQ(ζ) = n−1/ke−n|ζ|
2k+2nk−1/2 Re(ζk)

n−1∑
j=0

Dj(ζ)

Dj−iDj
,

Dj(z) =

∣∣∣∣∣∣∣∣∣∣∣

〈
z0, z0

〉 〈
z0, z1

〉
· · ·

〈
z0, zj

〉〈
z1, z0

〉 〈
z1, z1

〉
· · ·

〈
z1, zj

〉
...

...
. . .

...〈
zj−1, z0

〉 〈
zj−1, z1

〉
· · ·

〈
zj−1, zj

〉
1 z · · · zj

∣∣∣∣∣∣∣∣∣∣∣
,

Dj =

∣∣∣∣∣∣∣∣∣∣∣

〈
z0, z0

〉 〈
z0, z1

〉
· · ·

〈
z0, zj

〉〈
z1, z0

〉 〈
z1, z1

〉
· · ·

〈
z1, zj

〉
...

...
. . .

...〈
zj−1, z0

〉 〈
zj−1, z1

〉
· · ·

〈
zj−1, zj

〉〈
zj , z0

〉 〈
zj , z1

〉
· · ·

〈
zj , zj

〉

∣∣∣∣∣∣∣∣∣∣∣
,

〈
ζi, ζj

〉
=

Γ
(
i+1
k

)
Γ( i−jk + 1)

1

n
1+j
k k1+ i−j

2k

1F1

( i+ 1

k
,
i− j
k

+ 1,
n

k

)
, i ≡ j (mod k).

Unfortunately, attempts to compute R explicitly from these equations have been unsuc-
cessful. It would seem that the route of solving Riemann-Hilbert problems to determine
properties of the orthogonal polynomials considered in [11] among others is the better
way to approach this problem.

3.3 Numerical computations

In applications, calculating orthogonal polynomials using the method in Section 3.2 turn
out to be ineffective due to numerical instabilities. A numerically stable algorithm which
we will instead make use of is Modified Gram-Schmidt (MGS). We present some pseu-
docode of the algorithm for completion.

Algorithm 1 Algorithm for orthogonalizing a set of vectors v1, . . . , vn under some scalar
product 〈·, ·〉.

procedure Modified Gram Schmidt(v1, . . . , vn)
for i = 1 to n do

rii = ‖vi‖
qi = vi/rii
for j = i+ 1 to n do

rij = 〈qi, vj〉
vj = vj − rijqi

end for
end for
return q1, . . . , qn

end procedure

Note that the inner product is calculated using (3.5). With this algorithm we can
compute pj up to j ≈ 600 for k = 2 in a reasonable time which can then in turn be used
to calculate R600 using (3.2). Note that MGS is inherently single threaded.
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3.3.1 Results

Lemniscate with k = 2

Below is the numerical R600 for the lemniscate ensemble in the square of width ∆z = 1
which corresponds to ∆ζ = 1 · 600−1/4 ≈ 0.2.

Figure 3.2: Numerical R600(z) with k = 2.

We can compare these results to the guess in equation (3.3) by considering the quotient
R̂(z)/Rn(z). Doing so we obtain the following plot.

Figure 3.3: R̂(z)/R600(z) in ∆z = 1.

The symmetric appearance is inspiring but it is clear that there is a key ingredient
missing. We remark that the resulting quotient is not completely radially symmetric.

We now turn to looking at the point ζ = 0 in detail. The result R600(0) ≈ 0.846 665
along with the behavior of Rn(0) for lower n suggests the following conjecture.

Conjecture 3.3.1. For the k = 2 lemniscate ensemble with the rescaling rn = n−1/2k

we have

R(0) =
3

2
√
π
.

We remark that R̂(0) = 1√
π

so the fact that there is a factor 1/
√
π in the above

equation is not as unexpected as one might initially think.
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For higher k, numerical instabilities related to orthogonalizing the polynomials have
made similar results with sufficient precision hard to obtain. The code for orthogonalizing
the polynomials along with the coefficients for the pj ’s for k = 2 can be found in [23].

Lemniscate with k = 3

As mentioned above, high n leads to numerical instabilities. The highest n with full
orthogonality is n = 50 which suffices for investigating basic characteristics of Rn.

Figure 3.4: Unscaled one-point intensity function R50 over the entire droplet.

Comparing this with the minimizer in Figure 1.5 we see the same low intensity at
the origin. Note that as the amount of particles increases, the peaks at the edges of the
droplet become sharper.

We can also look at R50 near z = 0 analogously to Figure 3.3.

Figure 3.5: Rescaled one-point intensity function R50 near z = 0.
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The k = 3 orthogonal polynomials can also be generated using the code in [23].

3.4 Insertion of a point charge at the boundary of the Gini-
bre ensemble

In this section we consider both the one-point intensity function and the partition function
for the case of the Ginibre ensemble with a point charge inserted on the boundary. For
the discussion on the partition function we will have to use a result from Chapter 4.

Inserting a point charge on the boundary means that we change the potential to

Q̃(ζ) = |ζ|2 − 2 Re(ζ)− 2c

n
log |ζ|.

Note that since the Ginibre ensemble is radially symmetric, this can be seen as just
inserting a point charge at any point in ∂S.

3.4.1 Calculating the one-point intensity function

Given a potential V , we let 〈·〉V denote the inner product with respect to that potential.
We then have that〈

ζi, ζj
〉
Q̃

=

∫
C
ζiζ̄je−nQ̃(ζ) dA(ζ) =

∫
C
ζi+cζ̄j+ce−nQ(ζ) dA(ζ) =

〈
ζi+c, ζj+c

〉
Q
.

From this it is clear that for positive integers c, the one-point intensity function can be
approximated using the methods of Section 3.3. Doing this with c = 1 we obtain the
following figure where we include the c = 0 case for comparison.

Figure 3.6: Numerical R150(z) with c = 1. Figure 3.7: Numerical R150(z) with c = 0.

Note that while the two above figures show the same region, their scales differ. Trans-
lating in the direction of the imaginary axis in Figure 3.6 sufficiently far, we recover the
results of Figure 3.7.

The −2c
n log |ζ| term corresponds to multiplying the correlation kernel by |ζ|2c as is

clear from considering e−nQ. Therefore an educated guess for R in view of the results of
Section 2.3.1 could be

Rg(z) =
1

2
erfc

(√
2 Re(z)

)
· |z|2. (3.10)
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Of course this guess diverges as z →∞ on the left half plane so we should not expect it
to be completely correct. To check the guess we plot the quantity Rg(z)/Rn(z). Doing
so we obtain the following figure.

Figure 3.8: Numerical Rg(z)/R150(z) with c = 1.

Clearly this quotient is not identically 1 but note that the area around z = 0 is smooth
so there is reason to believe that further corrections should reduce to something similar
to (3.10) near 0. The singularity near z = 0.8 is not easily identifiable and attempts to
compensate for it by another factor have proved unfruitful.

3.4.2 Calculating the partition function

We can define the interpolating generalization

Qt(ζ) = |ζ − t|2, Q̃t(ζ) = |ζ − t|2 − 2c

n
log |ζ|.

This naturally leads to the following t-dependent quantities.

dP̃tn =
1

Z̃tn
e−H̃

t
n dVn, H̃t

n =
∑
i 6=j

log
1

|ζi − ζj |
+ n

n∑
j=1

Q̃t(ζj), Z̃tn =

∫
Cn
e−H̃

t
n dVn.

The goal of this section is to determine log Z̃1
n since this is the partition function of

the Ginibre ensemble with a charge at the boundary. We will need to use the result in
equation (4.5) from Chapter 4 to determine log Z̃0

n. To determine log Z̃tn we now look at
the derivative of log Z̃tn with respect to t as follows

d

dt
log Z̃tn =

1

Z̃tn

∫
Cn

∂

∂t
e−H̃

t
n dVn =

∫
Cn

∂

∂t

−n n∑
j=1

|ζj − t|2
 dP̃tn

=

∫
Cn

2n
n∑
j=1

Re(ζj − t) dP̃tn = 2nRe

∫
C

(t− ζ)R̃
t
n(ζ) dA(ζ)

where R̃
t
n is the non-rescaled one-point intensity function in the potential Q̃t. We will

need to make use of the following theorem from [6] to proceed.
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Theorem 3.4.1 ([6], Theorem 6.1). Let R̃
t
n be as above and let Rt

n denote the one-point
intensity function associated to the potential Qt. Then for |t| < 1

(R̃
t
n −Rt

n) dA = c(ω∞ − δ0) + o(n)

where ω∞ = ds
2π is the arclength measure on the circle of radius 1 centered at t and δ0 the

Dirac measure at 0.

By symmetry we have that ∫
C

(t− ζ)Rt
n(ζ) dA(ζ) = 0

since Rt
n is radially symmetric around t. We thus have

d

dt
log Z̃tn = 2nRe

∫
C

(t− ζ)(R̃
t
n(ζ)−Rt

n(ζ)) dA(ζ)

= 2cnRe

[∫
Tt

(t− ζ)
ds

2π
−
∫
C

(t− ζ)δ0(ζ) dA(ζ)

]
+ o(n) = 0− 2cnt+ o(n)

where Tt is the circle of radius 1 centered at t. With this simple expression we can
calculate log Z̃1

n as

log Z̃1
n = log Z̃0

n +

∫ 1

0
(−2cnt) dt+ o(n) = log Z̃0

n − cn+ o(n) =⇒

− log Z̃1
n = n2 3

4
− n

2
log n+ n

[
1− log(2π)

2
+ c+ c

]
+ o(n).

Remark. Work is being done on the partition function of less well-behaved ensembles
including the lemniscate ensemble by Alfredo Deaño and Nick Simm using Riemann-
Hilbert techniques [13].
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Chapter 4

Partition function of the
Mittag-Leffler ensemble

Recall from Chapter 2 that we refer to potentials of the form

Q(ζ) = |ζ|2λ − 2c

n
log |ζ|

as Mittag-Leffler potentials. The log |ζ| term corresponds to an inserted point charge of

strength c at 0 as can be seen from e−nQ(ζ) = |ζ − 0|2ce−n|ζ|2λ . For technical reasons we
will only consider c > −1 but having the charge be repelling is more physically interesting
so this will not prove to be an issue.

Our goal of this chapter is to obtain the asymptotic expansion of the partition func-
tion of the Mittag-Leffler ensemble. We will also compare the results to those given by
Zabrodin and Wiegmann in [38].

The partition function is discussed briefly in Section 1.2.1 but we expand on this by
remarking that the logarithm of 1

Zn
can be written as

− logZn = An2 +Bn log n+ Cn+O(log n).

Here A is known as the free energy of the system and coincides with the logarithmic
energy discussed in Section 1.4, B is universal in that it is independent of Q. The last
named term, C, can be decomposed as C = c0 + c1 where c0 is independent of Q and
c1 is proportional to the entropy of the system. See e.g. [25] and [38] for more on this
interpretation.

We briefly state that for a measure µ on C with dµ(ζ) = m(ζ) dA(ζ), the entropy
ent(µ) is often defined as

ent(µ) =

∫
supp(µ)

log
1

m(ζ)
dµ(ζ) =

∫
supp(µ)

m(ζ) log
1

m(ζ)
dA(ζ) (4.1)

which can be seen as a continuous counterpart to (1.3). In particular, the Ginibre en-
semble, which is the case c = 0, λ = 1, has entropy 0 since log 1

∆Q ≡ 0 which will allow
us to determine c0 and by extension c1 for other systems. The entropy interpretation is
however slightly problematic as will be discussed in Section 4.2.

4.1 Explicit calculation of the asymptotic expansion

Our main tool to calculate the partition function is (1.10). Since we calculated the
squares of the orthogonal polynomials for the Mittag-Leffler ensemble in Lemma 2.1.1
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we can proceed directly and write

Zn =
( c+1−λ

λ )! · ( c+1−λ
λ + 1

λ)! · · · ( c+1−λ
λ + n−1

λ )!

(λn
c
λ )nn

0+1+2+...+n
λ

n!. (4.2)

To unravel this messy expression we consider the logarithm of Zn which turns the product
in the numerator into a sum

log
[ n−1∏
k=0

(c+ 1− λ+ k

λ

)
!
]

=
n−1∑
k=0

log
[(c+ 1− λ+ k

λ

)
!
]
. (4.3)

Throughout this chapter we will make frequent use of the asymptotic expansion of the
factorial function. This expansion is often referred to as Stirling’s approximation and
takes on many equivalent forms, one of them being

log n! = n log n− n+
1

2
log(2π) +O

(
1

n

)
as found in e.g. [33, Eq. 5.11.1]. Applying Stirling’s approximation to (4.3) we have that
each term takes the form

log
[(c+ 1− λ+ k

λ

)
!
]

=
(c+ 1− λ+ k

λ

)
log
(c+ 1− λ+ k

λe

)
+

1

2

[
log(2π) + log

(c+ 1− λ+ k

λ

)]
+O

( λ

c+ 1− λ+ k

)
.

Stirling’s approximation requires the argument to be large but this is not an issue as we
only need to consider the tail of the sum for which we can safely assume k � λ. The
ordo term above is of the order of 1

k which grows as log n when summed and so a O(log n)
term in the expansion of logZn will be able to account for its behavior. Returning to the
expansion we move the logarithms outside again and write

log
[ n−1∏
k=0

(c+ 1− λ+ k

λe

)( c+1−λ+k
λ

)
]

︸ ︷︷ ︸
=A1

+
1

2
log
[ n−1∏
k=0

(c+ 1− λ+ k

λ

)]
︸ ︷︷ ︸

= 1
2
A2

+n
log(2π)

2︸ ︷︷ ︸
=A3

+O(log n).

We denote the terms A1, A2 and A3 to make it easier to keep track of them and begin
by expanding A1.

Lemma 4.1.1. A1 can be simplified as

log
[ n−1∏
k=0

(c+ 1− λ
λe

+
k

λe

)( c+1−λ
λ

+ k
λ

)
]

=
1

λ

[
ζ ′(−1, c+ 1− λ+ n)− ζ ′(−1, c+ 1− λ)

]
− n

2λ
(1 + 2c− 2λ+ n)(1 + log λ)

where ζ ′ is the derivative with respect to the first parameter of the generalized Riemann
zeta function which is defined as

ζ(s, q) =

∞∑
k=0

(q + k)−s.
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Proof. Expanding A1 back into a sum we have

A1 =
n−1∑
k=0

(
c+ 1− λ+ k

λ

)[
log(c+ 1− λ+ k)− log(λe)

]
=

1

λ

[
n−1∑
k=0

(c+ 1− λ+ k) log(c+ 1− λ+ k)−
n−1∑
k=0

(c+ 1− λ+ k)[log λ+ 1]

]

=
1

λ

n−1∑
k=0

(q + k) log(q + k)− n

2λ
(1 + 2c− 2λ+ n)(1 + log λ)

where we have defined q = c + 1 − λ. To get the last sum into something which we
can expand asymptoticly, we begin by noting that with ζ the generalized Riemann zeta
function we have that

d

ds
ζ(s, q)

∣∣∣∣
s=−1

=
d

ds

∞∑
k=0

(q + k)−s
∣∣∣∣
s=−1

=

∞∑
k=0

−(q + k) log(q + k).

Taking (′) to mean the derivative with respect to the first parameter we have that

n−1∑
k=0

(q + k) log(q + k) =

∞∑
k=0

(q + k) log(q + k)︸ ︷︷ ︸
−ζ′(−1,q)

−
∞∑
k=0

(q + k + n) log(q + k + n)︸ ︷︷ ︸
−ζ′(−1,q+n)

.

Bringing this together we can write

A1 =
1

λ
[ζ ′(−1, c+ 1− λ+ n)− ζ ′(−1, c+ 1− λ)]− n

2λ
(1 + 2c− 2λ+ n)(1 + log λ)

which is what we wished to show.

The asymptotic behavior of ζ ′(−1, x) can be found in [18, p. 349] as

ζ ′(−1, q) =
1

2
q2 log q − 1

4
q2 − 1

2
q log q +O(log q). (4.4)

Combining this with the above lemma we can expand A1 as

1

λ
ζ ′(−1, c+ 1− λ+ n) =

1

λ

[
1

2
(c+ 1− λ+ n)2 log(c+ 1− λ+ n)− 1

4
(c+ 1− λ+ n)2

− 1

2
(c+ 1− λ+ n) log(c+ 1− λ+ n) +O(log(c+ 1− λ+ n))

]

= n2 log n
1

2λ
− n2 1

4λ
+ n log n

2c+ 1− 2λ

2λ
+O(log n),

A1 =
n2 log n

2λ
− n2

[
3

4λ
+

log λ

2λ

]
+ n log n

2c+ 1− 2λ

2λ

− n 1

2λ
(1 + 2c− 2λ)(1 + log λ) +O(log n).

The next lemma will allow us to rewrite A2 to make is easier to expand.
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Lemma 4.1.2.

n−1∏
k=0

(c+ 1− λ
λ

+
k

λ

)
=

Γ(c+ 1− λ+ n)

λnΓ(c+ 1− λ)
.

Proof. After pulling out the factor λ−n we are left with the product (c+1−λ) · · · (c+n−λ)
which we can write as

(c+ n− λ)!

(c− λ)!
=

Γ(c+ 1− λ+ n)

Γ(c+ 1− λ)

and the result follows after multiplying λ−n back in.

With this we can use Stirling’s approximation to obtain the asymptotics of A2.

log
[ n−1∏
k=0

(c+ 1− λ
λ

+
k

λ

)]
= log((c− λ+ n)!)− n log λ− log((c− λ)!)

= (c− λ+ n)
[

log(c− λ+ n)− 1
]
− n log λ+O(log n)

= n(log n− 1)− n log λ+O(log n).

Lastly we note that the logarithm of the denominator of (4.2) can be written as

n log λ+
cn

λ
log n+

n(n+ 1)

2λ
log n = n2 1

2λ
log n+ n log n

[ c
λ

+
1

2λ

]
+ n log λ.

We are now ready to expand (4.2). For the n! factor we use Stirling’s approximation
again.

− logZn =
−n2 log n

2λ
+ n2

[
3

4λ
+

log λ

2λ

]
− n log n

2c+ 1− 2λ

2λ
+

n

2λ
(1 + 2c− 2λ)(1 + log λ)︸ ︷︷ ︸

A1

−n
2

[log n− 1] +
n

2
log λ︸ ︷︷ ︸

1
2
A2

+n2 1

2λ
log n+ n log n

[
c

λ
+

1

2λ

]
+ n log λ︸ ︷︷ ︸

Denominator

−n log(2π)

2︸ ︷︷ ︸
A3

−n log n+ n︸ ︷︷ ︸
Stirling n!

+O(log n)

= n2

[
3

4λ
+

log λ

2λ

]
− n

2
log n

+ n

[
1− log(2π)

2
+

1 + 2c− λ+ (1 + 2c+ λ) log λ

2λ

]
+O(log n). (4.5)

Recalling that the Ginibre ensemble (c = 0, λ = 1) has entropy 0 we note that 1− log(2π)
2 is

the constant term and so the entropy is 1+2c−λ+(1+2c+λ) log λ
2λ . The n log n term is constant

as expected and the free energy is of the form 3
4λ + log λ

2λ .

Remark. We can also consider letting c scale with n. This corresponds to changing c 7→ cn
in (4.5) which we write as

− logZn = n2

[
3

4λ
+

log λ

2λ
+
c

λ
(1 + log λ)

]
− n

2
log n

+ n

[
1− log(2π)

2
+

1− λ+ (1 + λ) log λ

2λ

]
+O(log n). (4.6)
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Elliptic Ginibre ensemble

In this chapter we have limited ourselves to the case of radially symmetric potentials
on account of the simpler orthogonal polynomials. However, using some older results of
orthogonal polynomials by Eijndhoven and Meyers [36], Lee and Riser [29] have recently
treated the case of the potential

Q(ζ) = |ζ| − tRe(ζ2), 0 ≤ t < 1

for which the droplet is an ellipse. We refer to this ensemble as the elliptic Ginibre
ensemble. From equation (15) in [29] we see that

‖πj‖2 =
j!

√
n (n(1− t2))j+1/2

after discarding a factor π to compensate for our reduced area element. To calculate the
partition function we make use of (1.10) and find

Zn =
1

(
√
n)n(n− nt2)n/2

n−1∏
j=0

j!


︸ ︷︷ ︸
=G(n+2)

·

n−1∏
j=0

1

(n− nt2)j


︸ ︷︷ ︸

= 1

(n−nt2)
n
2 (n−1)

=⇒

logZn = −n
2

log n− n

2

(
log(1− t2) + log n

)
+ logG(n+ 2)− n

2
(n− 1)

(
log(1− t2) + log n

)
where G is known as the Barnes G-function. The expansion of the logarithm of the
Barnes G-function can be found in [10, p. 269] as

logG(z + 1) = z2
(1

2
log z − 3

4

)
+

1

2
log(2π)z +O(log z).

Putting this together we obtain

− logZn = n2

[
3

4
− t2

2

]
− n

2
log n+ n

[
1− log(2π)

2

]
+O(log n) (4.7)

and we conclude that changing the parameter t affects only the n2 term. We also note
that ∆Q ≡ 1, which is the same as for the Ginibre potential, since the real part of an
analytic function is harmonic.

4.2 Zabrodin and Wiegmann comparision

The asymptotic expansion of logZn is discussed in a more general setting in [38]. There
~ takes on the role of 1/n and the expansion is written as

logZn = c(n) +
F0

~2
+
F1/2

~
+ F1 +O(~) (4.8)

where c(n) is a normalizing term which is independent of Q. An expression for F1/2 is
given in equation (3.6) in [38] as

F1/2 = −1

2
(2− β)

∫
ρ0 log ρ0 d

2z (4.9)
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where ρ0 is the density of particles. In this section we attempt to verify the above relation
for the results in the previous section. We first note that (4.8) does not contain a factor
n log n meaning it has been absorbed by the normalizing term which agrees with (4.5)
and (4.7).

The density of particles, ρ0, can be identified with ∆Q in view of the discussion in
Section 1.4. We therefore need to evaluate the following integral

I =

∫
S

∆Q log(∆Q) dA

which shares a striking similarity to (4.1), lending credibility to the entropy interpreta-
tion.

Allowing c 6= 0 for the Mittag-Leffler ensemble introduces issues since we are mul-
tiplying ∆Q with log ∆Q. We therefore fix c = 0 and recall from Section 2.1.1 that

∆Q = λ2|ζ|2λ−2 and S = {ζ ∈ C, |ζ| ≤ λ
−1
2λ }. Substituting this we have

I = λ2

[
(2 log λ)

∫
S
|ζ|2λ−2 dA(ζ) + (2λ− 2)

∫
S
|ζ|2λ−2 log |ζ| dA(ζ)

]
.

The first integral is easily evaluated as 1/λ2. For the second integral we use integration
by parts

∫
S
|ζ|2λ−2 log |ζ| dA(ζ) = 2 log(r)

r2λ

2λ

∣∣∣
r=λ

−1
2λ
− 2

∫ λ
−1
2λ

0

r2λ−1

2λ
dA(ζ)

=
−1

2λ3
log λ− 1

2λ3
=
−1

2λ3
(1 + log λ).

Returning we find

I = 2 log λ− λ− 1

λ
(1 + log λ).

We substitute this into (4.9) with β = 1 and obtain

F1/2 =
λ− 1

2λ
(1 + log λ)− log λ = −1− λ+ (1 + λ) log λ

2λ
.

Comparing with (4.5), we see that we have the same result with a different sign which
is a consequence of Zabrodin and Wiegmann expanding logZn and not − logZn. We
conclude that (4.9) is correct at least in the c = 0 case for Mittag-Leffler ensembles as
well as for the elliptic Ginibre ensemble.

We also note that F1/2 is the same for the Ginibre ensemble and the elliptic Ginibre
ensemble which is to be expected from the fact that log 1 = 0.

4.3 Hard edge correction

We refer to ensembles with Q = +∞ in the complement of S as hard edge ensembles. In
this context, ensembles with regular edges are referred to as free edge ensembles. For more
on hard edge ensembles see e.g. [2]. Our goal of this section is to calculate the partition
function of the hard edge Mittag-Leffler ensemble. First we show that the orthogonal
polynomials are the monomials analogously to the proof of Lemma 2.1.1. Recall from

Section 2.1.1 that S = {ζ ∈ C, |ζ| ≤ λ
−1
2λ }.
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Lemma 4.3.1. For

Q(ζ) =

{
|ζ|2λ − 2c

n log |ζ| if |ζ| ≤ λ
−1
2λ ,

+∞ if |ζ| > λ
−1
2λ ,

the monic orthogonal polynomials are monomials with

‖πj‖2 =
γ
(
c+j+1
λ , nλ

)
λn

c+j+1
λ

, γ(x, b) =

∫ b

0
tx−1e−t dt

where γ is known as the lower incomplete gamma function.

Proof. Proceeding as in Lemma 2.1.1, we write the integral as

‖πj‖2 = 2

∫ Rλ

0
r2c+2j+1e−nr

2λ
dr.

After making the substitution t = nr2λ, the new limits of integration are 0 and n
λ and

the integral takes the form

‖πj‖2 =
1

λn

(
1

n

) c+j+1−λ
λ

∫ n
λ

0
t
c+j+1−λ

λ e−t dt =
γ
(
c+j+1
λ , nλ

)
λn

c+j+1
λ

.

Substituting this into (1.10) we find

Zhard
n =

γ
(
c+1
λ , nλ

)
· γ
(
c+2
λ , nλ

)
· · · γ

(
c+n
λ , nλ

)
(λn

c
λ )nn

0+1+2+...+n
λ

n!.

Instead of expanding this directly as in Section 4.1, we consider the quotient

qn =
Zhard
n

Z free
n

=
γ
(
c+1
λ , nλ

)
· γ
(
c+2
λ , nλ

)
· · · γ

(
c+n
λ , nλ

)
Γ( c+1

λ ) · Γ( c+2
λ ) · · ·Γ( c+nλ )

=

n∏
j=1

qj,n, qj,n =
γ( c+jλ , nλ )

Γ( c+jλ )
.

(4.10)

Computing the above product numerically for different λ suggests that log(qn)√
n

should

converge to −κ
√
λ for some positive constant κ as n → ∞. Our goal is now to give a

nicer expression for κ than an infinite product and prove the
√
λ and

√
n dependence.

Proposition 4.3.2. In the asymptotic limit n→∞ we have the relation

qn =

n∏
j=
√
n logn

qj,n(1 + o(1)).

Before attempting a proof of this fact we present a helpful lemma.

Lemma 4.3.3. The sequence {qj,n}nj=1 is decreasing for j + c < n.
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Proof. For simplicity we introduce the upper incomplete gamma function which is defined
as

Γ(a, x) =

∫ ∞
x

ta−1e−t dt = Γ(a)− γ(a, x)

allowing us to write qj,n as

qj,n = 1−
Γ
(
c+j
λ , nλ

)
Γ
(
c+j
λ

) =: 1−Q
(
c+ j

λ
,
n

λ

)
. (4.11)

Remark. The function Q is sometimes referred to as the regularized incomplete gamma
function since 0 ≤ Q ≤ 1.

It is now clear that if we can prove that Q(a, b) is increasing in a with a < b, the
result will follow. Taking (′) to mean the derivative with respect to the first parameter
we as usual have

Q′(a, b) =
Γ′(a, b)Γ(a)− Γ(a, b)Γ′(a)

(Γ(a))2
.

The derivative of the gamma function can be given in terms of the digamma function ψ
which is defined as the logarithmic derivative of the gamma function, i.e.

ψ(x) =
Γ′(x)

Γ(x)
.

From [33, Eq. 5.11.2] we have the inequality

ψ(x) < log x (4.12)

with asymptotic equality. We can now calculate Γ′(a, b) as

Γ′(a, b) =

∫ ∞
b

∂

∂a
ta−1e−t dt =

∫ ∞
b

log(t) · ta−1e−t dt = −
∫ ∞
b

log(t)
∂Γ(a, b)

∂b
dt

= −
[
Γ(a, t) log t

]∞
b

+

∫ ∞
b

Γ(a, t)

t
dt = Γ(a, b) log b+

∫ ∞
b

Γ(a, t)

t
dt

where the disappearance of Γ(a, t) log t at t =∞ is justified by the asymptotic identity

Γ(a, x) = xa−1e−x
(

1 +O
(a
x

))
(4.13)

as can be found in e.g. [33, Eq. 8.11.2].
Returning to Q, we take x ∼ y to mean that x and y have the same sign. We now

claim that Q′(a, b) > 0 if a < b. Indeed,

Q′(a, b) =
Γ′(a, b)Γ(a)− Γ(a, b)Γ′(a)

(Γ(a))2
∼ Γ(a, b) log b+

∫ ∞
b

Γ(a, t)

t
dt− Γ(a, b)ψ(a)

∼ log b+
1

Γ(a, b)

∫ ∞
b

Γ(a, t)

t
dt− ψ(a)

> log b− log a+
1

Γ(a, b)

∫ ∞
b

Γ(a, t)

t
dt > 0

where we in the second to last step made use of (4.12).
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We are now ready to prove the earlier proposition.

Proof of Proposition 4.3.2. Throughout the proof we will treat
√
n log n as an integer

whenever necessary for simplicity. Since the statement of the proposition is that the first√
n log n factors are dismissable we can restate it as

√
n logn∏
j=1

qj,n = 1 + o(1) ⇐⇒

√
n logn∑
j=1

log (qj,n) = o(1).

Since qj,n ≤ 1, the largest term in the above sum is the one for which qj,n is smallest. We
can now put an upper bound on the sum by replacing qj,n with q√n logn,n on account of
the above lemma.∣∣∣∣∣∣

√
n logn∑
j=1

log (qj,n)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
√
n logn∑
j=1

log
(
q√n logn,n

)∣∣∣∣∣∣ =
√
n log n

∣∣∣log
(
q√n logn,n

)∣∣∣ .
From now on we drop the absolute value bars since we wish to prove that the above quan-

tity converges to 0 as n→∞. We now consider the Taylor expansion of log
(
q√n logn,n

)
which in view of (4.11) takes the form

log
(
q√n logn,n

)
= −

Γ
(
c+j
λ , nλ

)
Γ
(
c+j
λ

) +O


Γ

(
c+j
λ , nλ

)
Γ
(
c+j
λ

)
2
 .

If we can show that the first term multiplied by
√
n log n goes to zero as n → ∞ it

will follow that the ordo term multiplied by
√
n log n also dies as n→∞ since

√
n log n

clearly diverges. Before computing this limit we set c = 0 without loss of generality
since j grows as

√
n log n and the additional term c becomes negligible in the limit. The

denominator can be expanded using Stirling’s approximation and for the numerator we
use (4.13). Dropping the minus sign and expanding the quotient we obtain

√
n log n

Γ
(√

n logn
λ , nλ

)
Γ
(√

n logn
λ

) =
(
√
n log n) ·

(
n
λ

)√n logn
λ

−1
e−

n
λ

(
1 +O

(√
n logn
n

))
√

2π
(√

n logn
λ

)√n logn
λ

−1 (√
n logn
λ

) 1
2
e−
√
n logn
λ

(
1 +O

(
1√

n logn

))
=
√
n log n

(
n√

n log n

)√n logn
λ

−1

e
√
n logn−n

λ︸ ︷︷ ︸
An

1 +O
(√

n logn
n

)
√

2π
(√

n logn
λ

) 1
2
(

1 +O
(

1√
n logn

))
︸ ︷︷ ︸

Bn

.

Clearly Bn → 0 as n→∞ since only the numerator is bounded. We claim that An also
approaches 0 as n→∞. Indeed, we can group the factors of An as

|An| =

∣∣∣∣∣e√n logn−n
λ (

√
n)
√
n logn
λ

log n

(log n)
√
n logn
λ

∣∣∣∣∣ ≤ ∣∣∣e√n logn−n
λ (

√
n)
√
n logn
λ

∣∣∣
where we assumed that n was sufficiently large in the final inequality. At this point we
can instead examine the limiting behavior of e

√
n logn−n(

√
n)
√
n logn and infer the behavior

of An by raising the result to the power 1
λ . Writing

√
n as e

1
2

logn we have

(An)λ = e
√
n logn−n(

√
n)
√
n logn = e

√
n logn+ 1

2

√
n logn logn−n.
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Since n grows faster than both
√
n log n and

√
n(log n)2, it follows that this quantity

approaches 0 as n→∞ from which the desired result follows.

With the above proposition proved, we set p = n− 1− j and q̃p,n = qj,n, yielding

log qn√
n

=
1√
n

√
n logn∑
p=0

log q̃p,n + o(1). (4.14)

Consider now the Gamma distribution which with X ∼ Gamma(k, θ) we recall has the
properties

fX(x) =
1

Γ(k)θk
xk−1e

−x
θ , E(X) = kθ, Var(X) = kθ2

as can be found in most introductory books on probability such as [22]. If X ∼
Gamma(k, θ) with k = c+j+1

λ = c+n−p
λ and θ = 1, we have

q̃p,n = qj,n = P
(
X <

n

λ

)
.

To proceed we will need to approximate the above expression for large j as follows.

Lemma 4.3.4. If X ∼ Gamma(k, 1) and Y = X−k√
k

, then Y converges to the standard

normal as k →∞, i.e.

P(Y ≤ a)→ Φ(a) as k →∞, Φ(a) =
1

2π

∫ a

−∞
e−t

2/2 dt

where Φ is the standard normal cumulative distribution function.

In the proof of the above lemma we will make use the characteristic function of
a random variable which we recall is the Fourier transform of its probability density
function. This next theorem will allow us to infer the convergence of distributions from
the convergence of characteristic functions.

Theorem 4.3.5 (Lévy’s continuity theorem). Let {Xn}∞n=1 be a sequence of random
variables such that the sequence of their characteristic functions, {χn}∞n=1, converges to
χ(t) for each t ∈ R, where χ is continuous at 0. Then there exists a random variable X
with characteristic function χ and Xn → X.

For a proof of the above theorem, see e.g. [37, Sec. 18.1]. It is worth mentioning that
uniqueness of X follows from the injectivity of the Fourier transform.

Proof of Lemma 4.3.4. It is a well-known fact from Fourier analysis that the Fourier
transform of a Gaussian, the standard normal probability density function, is another
Gaussian so we want to show that the characteristic function of Y approaches e−t

2/2

as k → ∞. We begin by noting that the characteristic function can be written as the
expectation value of eitX . With the substitution y = x(1− it) we have that

χX(t) = E[eitX ] =
1

Γ(k)

∫ ∞
0

eitxxk−1e−x dx =
1

Γ(k)

∫ ∞
0

(
y

1− it

)k−1

e−y
dy

1− it

=
1

Γ(k)(1− it)k

∫ ∞
0

yk−1e−y dy = (1− it)−k.
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Doing the same for Y we obtain

χY (t) = E
[
e
itX−k√

k

]
= e−i

√
ktχX

(
t√
k

)
= e−i

√
kt

(
1− it√

k

)−k
.

Knowing that our end goal is to write this as e−t
2/2, we temporarily take the logarithm

of (1− it/
√
k)−k and consider the Taylor expansion.

log

[(
1− it√

k

)−k]
= −k log

[
1− it√

k

]

= −k

[
−it√
k
− 1

2

(
it√
k

)2

+O

(
1

k3/2

)]
= i
√
kt− t2

2
+O

(
1√
k

)
=⇒

χY (t) = e−i
√
kte

i
√
kt−t2/2+O

(
1√
k

)
= e
−t2/2+O

(
1√
k

)
−−−→
k→∞

e−t
2/2.

With the pointwise convergence established, the desired result follows from Lévy’s con-
tinuity theorem.

In view of (4.14) we can now write

log qn√
n

=
1√
n

√
n logn∑
p=0

log
[
P
(
X <

n

λ

)]
+ o(1) −−−→

n→∞

1√
n

√
n logn∑
p=0

log

[
Φ

(
p√
λn

)]
, (4.15)

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt =
1

2

[
1 + erf

(
t√
2

)]
where Φ is the standard normal cumulative distribution function. This since

P
(
X <

n

λ

)
= P

(
X − k√

k
<

n
λ − k√
k

)
= P

Y <
p− c

λ
√

n−p+c
λ

 −−−→
n→∞

P
(
Y <

p√
λn

)

where we in the last step used that the p <
√
n log n condition yields that n−p+c

λ → n
λ

and c√
n
→ 0 as n→∞.

We now rewrite (4.15) as a Riemann sum. Since the argument is zero for p = 0 and
goes to infinity as n → ∞ for p =

√
n log n we want to integrate from 0 to ∞. Setting

ξp = p√
n

and noting that ∆ξ = p+1√
n
− p√

n
= 1√

n
we have that as n→∞, (4.15) becomes

√
n logn∑
p=0

log

[
Φ

(
ξp√
λ

)]
∆ξ →

∫ ∞
0

log

[
Φ

(
t√
λ

)]
dt =

√
λ

∫ ∞
0

log [Φ(u)] du =: −κ
√
λ.

This integral does not appear to be solvable with any common CAS such as Maple or
Mathematica but is much faster to compute to high precision than (4.10). Doing so we
obtain κ ≈ 0.477 535 339 808. Returning to the partition function we have

log qn = logZhard
n − logZ free

n = −κ
√
λ
√
n+ o(1) =⇒

− logZhard
n = n2

[
3

4λ
+

log λ

2λ

]
− n

2
log n

+ n

[
1− log(2π)

2
+

1 + 2c− λ+ (1 + 2c+ λ) log λ

2λ

]
+ κ
√
λ
√
n+O(log n).
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It is interesting to note that κ
√
λ is the only term which scales as

√
n. The fact that this

is the case for all λ suggests the following conjecture.

Conjecture 4.3.6. Let Zn denote the partition function of any ensemble. With notation
as above we have that

log

(
Zhard
n

Zfree
n

)
= C
√
n+ o(1) as n→∞

where C depends only on Q.
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