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Time-frequency analysis and localization operators
In time-frequency analysis, a central object is the short-time Fourier
transform Vg : L2(Rd) → L2(R2d)

Vgψ(x, ω) =

∫
Rd

ψ(t)g(t− x)e−2πit·ω dt.

From it, we can reconstruct ψ as

ψ =

∫
R2d

Vgψ(z)π(z)g dz.

A localization operator is constructed by weighing this reconstruction
with a symbol f : R2d → R

Ag
fψ =

∫
R2d

f(z)Vgψ(z)π(z)g dz.
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Example of localization operator action

7→

7→
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The (inverse) problem

Given some information aboutAg
f , estimate the

symbol f

Previously investigated by:
▶ Abreu and Dörfler (2012),
▶ Abreu, Gröchenig and Romero

(2014),
▶ Luef and Skrettingland (2018),
▶ Romero and Speckbacher (2022)

Four approaches:

▶ Fourier approach
▶ Look at spectral data of Ag

f

▶ Apply Ag
f to white noise

▶ Tiling the TF plane
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Quantum harmonic analysis crash course I

▶ Function-operator convolutions:

f ⋆ S =

∫
R2d

f(z)π(z)Sπ(z)∗ dz, f ⋆ (g ⊗ g) = Ag
f .

▶ Operator-operator convolutions:

T ⋆ S(z) = tr
(
Tπ(z)Sπ(z)∗

)
, (ψ ⊗ ψ) ⋆ (φ⊗ φ)(z) = |Vφψ(z)|2.

▶ Fourier-Wigner transform:

FW (S) = e−πix·ω tr(π(−z)S), FW (φ⊗ φ)(z) = eπix·ωVφφ(z).
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Quantum harmonic analysis crash course II

Boundedness: ∥f ⋆ S∥Sp ≤ ∥f∥L1∥S∥Sp ,
∥f∥Lp∥S∥S1 ,

∥T ⋆ S∥Lp ≤ ∥T∥Sp∥S∥S1 .

Associativity: (f ⋆ S) ⋆ T (z) = f ∗ (S ⋆ T )(z),
(f ∗ g) ⋆ S = f ⋆ (g ⋆ S).

Adjoints:
AS : Lp(G) → Sp, f 7→ f ⋆ S,

BS : Sp → Lp(G), T 7→ T ⋆ S,

A∗
S = BS .

Fourier: FW (f ⋆ S) = Fσ(f) · FW (S),

FW (T ⋆ S)(z) = FW (T )(z) · FW (S)(z).
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Symbol recovery = QHA deconvolution

▶ An equivalent view of symbol recovery is as deconvolution of
function-operator convolutions.

▶ This is interesting in its own right as a problem in quantum
harmonic analysis.

▶ Also poses the question of inverting f 7→ f ⋆ S for S ∈ S1 (symbol
recovery for mixed-state localization operators).

Uniqueness of problem is similar to phase retrieval:

f 7→ f ⋆ S injective ⇐⇒ FW (S) ̸= 0.
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Fourier deconvolution

We can try to apply a convolution theorem directly to disentangle the
function-operator convolution.

FW (Ag
f )(z) = FW (f ⋆ (g ⊗ g))(z) = Fσ(f)(z)FW (g ⊗ g)(z)

= Fσ(f)(z)A(g)(z) = Fσ

(
f ∗W (g)

)
(z).

=⇒ Fσ(FW (Ag
f )) = f ∗W (g)

This can be deconvolved!

▶ Requires full spectral knowledge (to compute FW (Ag
f )!)

▶ Requires knowledge of window / blind deconvolution

(We have computed the Weyl symbol of Ag
f )
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Spectral approach
Convolve with φ⊗ φ:

Ag
f ⋆ (φ⊗ φ)(z) = f ∗ (g ⊗ g) ⋆ (φ⊗ φ)(z) = f ∗ |Vgφ|2(z)

= tr
(
Ag

fπ(z)(φ⊗ φ)π(z)∗
)
=

(∑
k

λkhk ⊗ hk

)
⋆
(
φ⊗ φ

)
(z) =

∑
k

λk|Vφhk(z)|2

If we know g, this turns into a deconvolution problem:

→
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Spectral approach - pure operator formulation

Taking the viewpoint of inverting f 7→ f ⋆ S, we can make this approach
a bit clearer:

(f ⋆ S) ⋆ S = f ∗ (S ⋆ S).

If we don’t know S, we can make a guess:

(f ⋆ S) ⋆ T = f ∗ (S ⋆ T ).

The closer T is to S, the more "Gaussian-like" S ⋆ T will be.
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Spectral approach - result formulation
Theorem
Let f ∈ L1(R2d) be real-valued and of bounded variation and S ∈ S1 be
positive with (S) = 1. Then if f ⋆ S =

∑
k λkhk ⊗ hk,∥∥∥∥∥

N∑
k=1

λkQS(hk)− f

∥∥∥∥∥
L1

≤
∞∑

k=N+1

|λk|+Var(f)

∫
R2d

|z|(S ⋆ S)(z) dz.

Moreover, in the N = ∞ case,
∞∑
k=1

λkQS(hk)(z) = f ∗ (S ⋆ S)(z)

which can be deconvolved in the sense that

f = F−1

(
F(f ∗ (S ⋆ S))

F(S ⋆ S)

)
.
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White noise approach

Idea: Spectrogram of white noise is
approximately uniform

Intuitively: Applying localization oper-
ator to white noise should hence weigh
this based on f

Improvement: To get rid of noise, take
the average over many realizations
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White noise estimator
Formally and visually, what does this look like?

ρ(z) =
1

K

K∑
k=1

Vφ(A
g
fNk) ≈

∑
m

λ2m|Vφhm(z)|2 ≈ f2 ∗ |Vφg|2(z) ≈ f(z)2.

ρ20 ρ200 ϑ f2 ∗ |Vgg|2 f2

Error estimation:∑
m

λ2m|Vφhm(z)|2 =
(
Ag

f

)2
⋆ (φ⊗ φ)(z) =

(
Ag

f2 + Error
)
⋆ (φ⊗ φ)

= f2 ∗ |Vφg|2 + Error ∗ (φ⊗ φ)
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White noise L1 error

Theorem
Let f ∈ Cd+2

c (R2d), ρ be given by ρ(z) = 1
K

∑K
k=1 |Vφ(A

g
fNk)(z)|2 with white noise variance

σ2, g, φ ∈ S(Rd) with ∥g∥L2 = ∥φ∥L2 = 1 and define

B1 = A

∥K∥L2 +

(
2d∑
j=1

∥∥∂d+1
j K

∥∥2
L2

)1/2
 , B2 =

(∫
R2d

∣∣(∇f2)(z)
∣∣ dz)(∫

R2d

|z||Vφg(z)|2 dz
)

where

K(y, z) = f(y)

∑
|α|=1

∫ 1

0

∂αf(y + t(z − y)) dt(z − y)

Vφφ(y − z)

and A is a constant independent ofK. Then there exists a C ≤ 1 such that

P
(∫

R2d

∣∣∣∣ρ(z)σ2
− f(z)2

∣∣∣∣ dz > B1 +B2 + t

)
≤

∥f∥2L2

t
√
K

[
3

2
√
πC

erf
(√

CK
)
+

3

C
√
K

e−CK

]
.
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"Optimal" white noise
If we have control over the input, we could choose "optimal" white
noise with less unevenness.

Taking this to its extreme conclusion would mean a "flat" spectrogram.
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Plane tiling
Idea: With white noise, we filled the time-frequency plane with white
noise - let’s instead fill it by an orthonormal basis!∑
n

|Vφen(z)|2 = I ⋆ (φ⊗φ)(z) = (1 ⋆φ⊗φ) ⋆ (φ⊗φ)(z) = 1 ∗ |Vφφ|2(z) = 1.

By replacing {en}n by
{
Ag

fen
}
n
this tiling will be weighed by f2:∑

n

|Vφ(Ag
fen)(z)|

2 =
∑
n

(Ag
fen ⊗Ag

fen) ⋆ (φ⊗ φ)(z)

= Ag
f

(∑
n

en ⊗ en

)
Ag

f ⋆ (φ⊗ φ)(z)

= (Ag
fIA

g
f ) ⋆ (φ⊗ φ)(z)

= (Ag
f )

2 ⋆ (φ⊗ φ)(z) ≈ Ag
f2 ⋆ (φ⊗ φ)(z) ≈ f(z)2.

Let’s try it out!
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Plane tiling example
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Frame tiling limitations

This method is expensive if we need many terms! Hence it should only
be used when we know something about the support of f , then the
inputs can be chosen to cover this area in the time-frequency plane.

We don’t have to use an ONB though - when we have full control over
input, it can be replaced by well chosen uniform white noise.
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Summary of methods (rank one)

Fσ(FW (f ⋆ (g ⊗ g))) = f ∗W (g)(z) ≈ f(z)(
f ⋆ (g ⊗ g)

)
⋆ φ⊗ φ(z) = f ∗ |Vφg|2(z) ≈ f(z)

|Vφ(Ag
f (N ))|2∑

n |Vφ(A
g
fen)(z)|

2 ≈ f2 ∗ |Vφg|2(z) ≈ f(z)2

Takeaway:
Quantum harmonic analysis provides an appropriate framework to
study localization operators!
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Future work
Mixed-state localization operators (f ⋆ S):
▶ Requires asymptotics of products (f1 ⋆ S1)(f2 ⋆ S2)
▶ New results on 1

K

∑K
k=1QS(f ⋆ S(Nk))

k→∞−−−→
∑

m λ
2
mQS(hm)

Replacing white noise by more general "ambient" input
▶ If |Vφ(N )|2 ∼ ρ, then |Vφ(Ag

fN )|2 ∼ f2 · ρ
Replace white noise by optimal input
▶ If we can find U ∈ L2(Rd) such that |Vφ(U)|2 ≈ 1 on some large ball,

then |Vφ(Ag
fU)|2 should approximate f2 on that ball.

Kernel methods
▶ If we can estimate the integral kernel of Ag

f , we can get f from it.
Toeplitz interpretation
▶ Localization operators are also (Fock) Toeplitz operators, are the

results interesting in this context?
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Thank you!


