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Continuous wavelet transform

The wavelet transformWf : L2(R)→ L2(R2, e−α)

Wf [s](α, β) = e−α/2
∫
R
s(t)f

(
t− β
eα

)
dt

is induced by the representation

π(α, β)f(t) = e−α/2f

(
t− β
eα

)
of time and scale shifts in the sense that

Wf [s](α, β) =
〈
s, π(α, β)f

〉
L2
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Examples of wavelets

Figure: Haar Figure:Mexican hat Figure:Morlet

Figure: Coiflet Figure: Daubechies Figure: Symlet
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An example (2 chirps)

Figure:Wavelet transform of two chirps with respect to Morlet wavelet
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Wavelet design

Mother wavelet f must only satisfy the admissibility condition∫ ∞
0

|f̂(ω)|2

ω
dω <∞

to guarantee invertibility

Wavelet design: Constructing mother wavelets f with desirable
properties for the continuous wavelet transform
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Wavelet uncertainty

Want wavelet transform to be well localized in R2

→ Want wavelet to be well localized in time and scale

I Historically, wavelet design has been led by qualitative features1
I Quantiative approaches have previously been unsuccessful2,3
I A framework by Levie and Sochen enables a quantative approach4

1Daubechies, Ten lectures on wavelets, (1992)
2Dahlke and Maass, The affine uncertainty principle in one and two dimensions, (1995)
3Maass et al, Do uncertainty minimizers attain minimal uncertainty?, (2010)
4Levie and Sochen, Uncertainty principles and optimally sparse wavelet transforms, (2020)
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Localization

To talk about scale, we introduce scale space:

Time space Frequency space

Scale space

Fourier

Scale
Warping

Elements of the scale space are denoted as f̃ ,

f̃(σ) = e−σ/2f̂(e−σ)
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Localization
To measure how localized a wavelet is in time and scale, we introduce
the observables:

Tx : f(t) 7→ tf(t), T̃σ : f̃(σ) 7→ σf̃(σ)

We measure localization with expected value and variance:

ef (T ) =
〈
Tf, f

〉
, vf (T ) =

〈
(T − ef (T ))2f, f

〉

Figure: The complex Mexican hat wavelet
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Localization

The observables Tx, Tσ are canonical (wrt. π) in the sense that

eπ(0,β)f (Tx) = ef (Tx) + β,

eπ(α,0)f (Tσ) = ef (Tσ) + α
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Signal space uncertainty

Makes sense to define uncertainty as variance of properties we
measure

LS(f) := e−2ef (Tσ)vf (Tx) + vf (Tσ)

I Want invariance LS(f) = LS
(
π(α, β)f

)
Lemma
If ef (Tx) = ef (Tσ) = 0,

LS(f) =
∥∥Txf∥∥2 + ∥∥Tσf∥∥2
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Phase space uncertainty

The phase space uncertainty was intro-
duced by Levie, Avraham and Sochen via the
ambiguity function Kf (α, β) =

〈
f, π(α, β)f

〉
Related to the “blurriness” of the wavelet
transform by

Q ∈Wf [L
2] =⇒ Q = Kf ∗Q

Related observables are:

A : F (α, β) 7→ αF (α, β),

B : F (α, β) 7→ βF (α, β)
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Phase space uncertainty

Definition

LP(f) = vKf (A) + vKf (B)

Using wavelet-Plancherel theory5:
Theorem
If ef (Tx) = ef (Tσ) = 0,

LP(f) =
∥∥Txf∥∥2 + ∥∥Tσf∥∥2︸ ︷︷ ︸

from LS(f)

+vWf̂

‖f̂‖W

(
iω

∂

∂ω

)∥∥∥∥∥ f̂ω
∥∥∥∥∥
2

+ vWf̂

‖f̂‖W

(− ln(ω))

5Levie and Sochen, A wavelet plancherel theory with application to sparse continuous
wavelet transform, (2017)
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Existence

Theorem
Let L be one of LS and LP. Then there exists an f ∈ L2 with
ef (Tx) = ef (Tσ) = 0 such that

L(f) = inf
y∈D
L(y)

where D is the domain of L

S. Halvdansson, J-F. Olsen, N. Sochen, and R. Levie, Existence of wavelet uncertainty
minimizers, (2021)
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Sketch of proof of existence

Consider a minimizing sequence (fn)n ⊂ DS (with efn(Tx) = efn(Tσ) = 0)
i.e.

LS(fn) −−−→
n→∞

inf
y∈DS

LS(y)

For large enough n, fn ∈ K where

K =
{
f ∈ DS : ‖Txf‖2 ≤ K, ‖Tσf‖2 ≤ K

}
for some constant K
Strategy:
K compact =⇒ existence of a minimizer
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Sketch of proof of existence
Goal: Show K compact

K closed:
Write K as intersection of
closed subsets.{
ef (Tx) = 0, ‖Txf‖2 ≤ K

}{
ef (Tσ) = 0, ‖Tσf‖2 ≤ K

}

K pre-compact:
Lemma
For any ε > 0, there exists a compact
subset Ca,b of L2 such that for any f ∈ K,
there is a y ∈ Ca,b such that

‖f − y‖ < ε.

Lemma =⇒ any sequence in K has a
Cauchy subsequence

L2 complete =⇒ K pre-compact
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Smoothness properties

Theorem
If f is a minimizer of LS with ef (Tx), ef (Tσ) = 0, then f ∈ C∞ and

f ′′(ω) =
(
ln(ω)2 + κ ln(ω)− σ

)
f(ω)

where

κ = 2‖f ′‖2,
σ = ‖f ′‖2 + ‖ ln(ω)f‖2
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Why do we need to approximate?

Wecan only optimize functions in finite dimen-
sional spaces
→ Space of linear splines with spacing h

Ph(0, b) ⊂ L2(0, b)

We want to verify:

inf
y∈Ph(0,b)

L(y) h→0−−−→
b→∞

inf
y∈D
L(y),

argmin
y∈Ph(0,b)

L(y) h→0−−−→
b→∞

argmin
y∈D

L(y)
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Constructing approximations

"Limits of Ph(0, b)minimizers are L2 minimizers"
Theorem
LetMb

h be the set of minimizers of L in DL ∩ Ph(0, b). Then any element of{
f ∈ L2(R+)

∣∣ ∃ two sequences bn →∞, hn → 0

and ∃{pbnhn ∈M
bn
hn
}n s.t. f = lim

n→∞
pbnhn

}
is a minimizer of L in DL
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Constructing approximations

Lemma
Let f be a minimizer of L. Then for any ε > 0, there exist b > 1, h > 0 and
y ∈ Ph(0, b) such that

‖f − y‖ < ε, |L(f)− L(y)| < ε

→ →
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Phase space uncertainty minimizers

Figure: Numerical spline minimizer of LP

R. Levie, E. K. Avraham, and N. Sochen, Wavelet design with optimally localized
ambiguity function: a variational approach, (2021)
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Thank you!
Questions?


