

Existence and Approximations of Wavelet Uncertainty Minimizers

Simon Halvdansson September 14, 2021

Based on joint work with Ron Levie, Jan-Fredrik Olsen and Nir Sochen

Continuous wavelet transform

The wavelet transform
$$W_f: L^2(\mathbb{R}) \to L^2(\mathbb{R}^2, e^{-\alpha})$$

$$W_f[s](\alpha,\beta) = e^{-\alpha/2} \int_{\mathbb{R}} s(t) \overline{f\left(\frac{t-\beta}{e^{\alpha}}\right)} dt$$

is induced by the **representation**

$$\pi(\alpha,\beta)f(t) = e^{-\alpha/2}f\left(\frac{t-\beta}{e^{\alpha}}\right)$$

of time and scale shifts in the sense that

$$W_f[s](\alpha,\beta) = \left\langle s, \pi(\alpha,\beta)f \right\rangle_{L^2}$$

NTNL

An example (2 chirps)

Figure: Wavelet transform of two chirps with respect to Morlet wavelet

VTNI

Wavelet design

Mother wavelet f must only satisfy the ${\bf admissibility\ condition}$

$$\int_0^\infty \frac{|\hat{f}(\omega)|^2}{\omega} d\omega < \infty$$

to guarantee invertibility

Wavelet design: Constructing mother wavelets f with desirable properties for the continuous wavelet transform

Wavelet uncertainty

Want wavelet transform to be well localized in \mathbb{R}^2

- $\rightarrow~$ Want wavelet to be well localized in time and scale
- Historically, wavelet design has been led by qualitative features¹
- Quantiative approaches have previously been unsuccessful^{2,3}
- A framework by Levie and Sochen enables a quantative approach⁴

¹Daubechies, *Ten lectures on wavelets*, (1992)

²Dahlke and Maass, *The affine uncertainty principle in one and two dimensions*, (1995)

³Maass et al, *Do uncertainty minimizers attain minimal uncertainty?*, (2010)

⁴Levie and Sochen, *Uncertainty principles and optimally sparse wavelet transforms*, (2020)

Localization

To talk about scale, we introduce **scale space**:

Elements of the scale space are denoted as \tilde{f} ,

$$\tilde{f}(\sigma)=e^{-\sigma/2}\hat{f}(e^{-\sigma})$$

Localization

To measure how localized a wavelet is in time and scale, we introduce the **observables**:

$$T_x: f(t) \mapsto tf(t), \qquad \tilde{T}_{\sigma}: \tilde{f}(\sigma) \mapsto \sigma \tilde{f}(\sigma)$$

We measure localization with expected value and variance:

 $e_f(T) = \left\langle Tf, f \right\rangle, \qquad v_f(T) = \left\langle (T - e_f(T))^2 f, f \right\rangle$

Figure: The complex Mexican hat wavelet

Localization

The observables T_x, T_σ are canonical (wrt. π) in the sense that

$$e_{\pi(0,\beta)f}(T_x) = e_f(T_x) + \beta,$$

$$e_{\pi(\alpha,0)f}(T_{\sigma}) = e_f(T_{\sigma}) + \alpha$$

Signal space uncertainty

Makes sense to define uncertainty as variance of properties we measure

$$\mathcal{L}_{\mathcal{S}}(f) := e^{-2e_f(T_\sigma)} v_f(T_x) + v_f(T_\sigma)$$

• Want invariance $\mathcal{L}_{S}(f) = \mathcal{L}_{S}(\pi(\alpha, \beta)f)$

Lemma

If
$$e_f(T_x) = e_f(T_\sigma) = 0$$
,

$$\mathcal{L}_{\mathrm{S}}(f) = \left\| T_x f \right\|^2 + \left\| T_\sigma f \right\|^2$$

Phase space uncertainty

The **phase space uncertainty** was introduced by Levie, Avraham and Sochen via the ambiguity function $K_f(\alpha, \beta) = \left\langle f, \pi(\alpha, \beta) f \right\rangle$

Related to the "blurriness" of the wavelet transform by

$$Q \in W_f[L^2] \implies Q = K_f * Q$$

Related observables are:

$$\begin{split} &A:F(\alpha,\beta)\mapsto \alpha F(\alpha,\beta),\\ &B:F(\alpha,\beta)\mapsto \beta F(\alpha,\beta) \end{split}$$

Phase space uncertainty

Definition

$$\mathcal{L}_{\mathcal{P}}(f) = v_{K_f}(A) + v_{K_f}(B)$$

Using wavelet-Plancherel theory⁵:

Theorem If $e_f(T_x) = e_f(T_\sigma) = 0$, $\mathcal{L}_{\mathrm{P}}(f) = \underbrace{\left\| T_x f \right\|^2 + \left\| T_\sigma f \right\|^2}_{from \mathcal{L}_{\mathrm{S}}(f)} + v \frac{\mathcal{W}_f}{\|\widehat{f}\|_{\mathcal{W}}} \left(i\omega \frac{\partial}{\partial \omega} \right) \left\| \frac{\widehat{f}}{\omega} \right\|^2 + v \frac{\mathcal{W}_f}{\|\widehat{f}\|_{\mathcal{W}}} (-\ln(\omega))$

⁵Levie and Sochen, *A wavelet plancherel theory with application to sparse continuous wavelet transform*, (2017)

13/21

Existence

Theorem

Let \mathcal{L} be one of \mathcal{L}_S and \mathcal{L}_P . Then there exists an $f \in L^2$ with $e_f(T_x) = e_f(T_\sigma) = 0$ such that

$$\mathcal{L}(f) = \inf_{y \in \mathcal{D}} \mathcal{L}(y)$$

where ${\cal D}$ is the domain of ${\cal L}$

S. Halvdansson, J-F. Olsen, N. Sochen, and R. Levie, *Existence of wavelet uncertainty minimizers*, (2021)

Sketch of proof of existence

Consider a minimizing sequence $(f_n)_n \subset \mathcal{D}_S$ (with $e_{f_n}(T_x) = e_{f_n}(T_{\sigma}) = 0$) i.e.

$$\mathcal{L}_{\mathrm{S}}(f_n) \xrightarrow[n \to \infty]{} \inf_{y \in \mathcal{D}_{\mathrm{S}}} \mathcal{L}_{\mathrm{S}}(y)$$

For large enough n, $f_n \in \mathcal{K}$ where

$$\mathcal{K} = \left\{ f \in \mathcal{D}_{\mathrm{S}} : \|T_x f\|^2 \le K, \|T_\sigma f\|^2 \le K \right\}$$

for some constant K

Strategy:

 $\mathcal{K} \text{ compact} \implies \text{existence of a minimizer}$

Sketch of proof of existence

Goal: Show ${\mathcal K}$ compact

\mathcal{K} closed:

Write \mathcal{K} as intersection of closed subsets.

$$\{ e_f(T_x) = 0, \|T_x f\|^2 \le K \}$$

$$\{ e_f(T_\sigma) = 0, \|T_\sigma f\|^2 \le K \}$$

${\cal K}$ pre-compact:

Lemma

For any $\varepsilon > 0$, there exists a compact subset $C_{a,b}$ of L^2 such that for any $f \in \mathcal{K}$, there is a $y \in C_{a,b}$ such that

 $\|f - y\| < \varepsilon.$

Lemma \implies any sequence in $\mathcal K$ has a Cauchy subsequence

 L^2 complete $\implies \mathcal{K}$ pre-compact \Box

Smoothness properties

Theorem

If f is a minimizer of \mathcal{L}_{S} with $e_f(T_x), e_f(T_\sigma) = 0$, then $f \in C^\infty$ and

$$f''(\omega) = \left(\ln(\omega)^2 + \kappa \ln(\omega) - \sigma\right) f(\omega)$$

where

$$\begin{split} \boldsymbol{\kappa} &= 2 \|f'\|^2,\\ \boldsymbol{\sigma} &= \|f'\|^2 + \|\ln(\omega)f\|^2 \end{split}$$

Why do we need to approximate?

We can only optimize functions in finite dimensional spaces

 \rightarrow **Space of linear splines** with spacing *h*

 $P_h(0,b) \subset L^2(0,b)$

We want to verify:

$$\inf_{\substack{y \in \mathbf{P}_{h}(\mathbf{0}, \mathbf{b})}} \mathcal{L}(y) \xrightarrow[b \to \infty]{h \to 0} \inf_{y \in \mathcal{D}} \mathcal{L}(y),$$
argmin $\mathcal{L}(y) \xrightarrow[b \to \infty]{h \to 0} \operatorname{argmin}_{y \in \mathcal{D}} \mathcal{L}(y)$

Constructing approximations

"Limits of $P_h(0,b)$ minimizers are L^2 minimizers"

Theorem

Let \mathcal{M}_h^b be the set of minimizers of \mathcal{L} in $\mathcal{D}_{\mathcal{L}} \cap P_h(0,b)$. Then any element of

$$\left\{ f \in L^2(\mathbb{R}^+) \mid \exists \text{ two sequences } b_n \to \infty, h_n \to 0 \\ \text{ and } \exists \{ p_{h_n}^{b_n} \in \mathcal{M}_{h_n}^{b_n} \}_n \text{ s.t. } f = \lim_{n \to \infty} p_{h_n}^{b_n} \right\}$$

is a minimizer of $\mathcal L$ in $\mathcal D_\mathcal L$

Constructing approximations

Lemma

Let f be a minimizer of \mathcal{L} . Then for any $\varepsilon > 0$, there exist b > 1, h > 0 and $y \in P_h(0, b)$ such that

$$||f - y|| < \varepsilon, \qquad |\mathcal{L}(f) - \mathcal{L}(y)| < \varepsilon$$

Phase space uncertainty minimizers

20/21

Figure: Numerical spline minimizer of \mathcal{L}_{P}

R. Levie, E. K. Avraham, and N. Sochen, *Wavelet design with optimally localized ambiguity function: a variational approach*, (2021)

Thank you! Questions?