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Time-frequency analysis and localization operators

In time-frequency analysis, a central object is the short-time Fourier
transform V;, : L?(R?) — L?(R2?)

Vydlew) = [ gl —ae 2t dt.
Rd
From it, we can recover v as
P = Vo (2)m(2)g dz.
R2d

A localization operator is constructed by weighing this recovery with a
symbol f: R?? — R

A?A/} = /de f(2)Vy(z)m(2)g dz.




Examples of localization operator action
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The (inverse) problem

Given some information about A‘J’c, estimate the
symbol f

Previously investigated by: Four approaches:
» Abreu and Dorfler (2012),

» Abreu, Gréchenig and Romero > Fourier approach
(2014), » Look at spectral data of Ai’c

> Luef and Skrettingland (2018), > Apply A% to white noise
» Romero and Speckbacher (2022) » Tiling the TF plane




Quantum harmonic analysis crash course |

» Function-operator convolutions:

[x8= | JEm)SnE) dz [x(g@g) = AF.
R2d

» Operator-operator convolutions:

Tx8(2) = tr (Tn(2)87(2)"), (v @Y)*(p®¢)(2) = [Vey(2)]*.

» Fourier-Wigner transform:

Fw(S) = e ™ tr(n(=2)8),  Fwlp®p)(2) = " Vop(2).




Quantum harmonic analysis crash course I

1z lIS ] se,
Boundedness: 1F % Sllsr < ||f||§p||S||31,
[T % S|[r < [|T||s[|S]]s1-
Associativity: (f*xS)*T(2) = f*(S*T)(2),

(fxg)xS=fx(g*S).

N Ag i IP(G) = 8", o S,

joints: Bs: 8P = [P(G), T Tx5,

A% = Bs.

Fourier: Fw(f x8) = Fo(f) - Fw(9),

Fw (T *5)(2) = Fw(T)(2) - Fw (S)(2)-



Fourier approach

We can try to apply a convolution theorem directly to disentangle the
function-operator convolution.

Fiv (49)(2) = Fw(f * (99 9))() = Fo (£)(2) Fw 9 © 9)(2)
= Fo()(2)A(9)(2) = Fo (Fo () £ W (9)) (2):

This can also be deconvolved!

» Requires full spectral knowledge (to compute ]—“W(Aji)!)
» Requires knowledge of window / blind deconvolution




Spectral approach
Convolve with ¢ ® ¢:

A (p@p)(2) =+ (g@9) *(p@)(z) = fx*|Vepl(2)

= tr (A% (2) (0 @ @)m(2)") = (Z Aoy, @ hk> (0 ® @)( Z A Vil (2

k
If we know ¢, this turns into a deconvolution problem:

Weighted accumultad spectrogram Recovered symbol




White noise approach

Idea: Spectrogram of white noise is
approximately uniform

Intuitively: Applying localization oper-
ator to white noise should hence weigh
this based on f

Improvement: To get rid of noise, take
the average over many realizations




White noise estimator
Formally and visually, what does this look like?

K
p(2) = = ST V(AN = SRVl () = £ % [VogP(2) ~ 1)
k=1 k

P20 P200 ’Vg9| 2

Error estimation:

> ARIVahn(2)2 = (49)° x (9 @ 9)(2) = (49, + Error) « (¢ @ )
k

= f?x |V¢g\2 + Error * (¢ ® )




Optimal white noise

If we have control over the input, we could choose "optimal" white
noise with less unevenness.

Variance = 1.091
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Variance = 0.73239




Plane tiling

Idea: With white noise, we filled the time-frequency plane with white
noise - let's instead fill it by an orthonormal basis!

D WVeen(R)P = Ix(p®9)(2) = (Lxp @) x (p @ 9)(2) = 1 [Vppl*(2) = 1.

n

By replacing {e,}, by { A%e, },, this tiling should be weighed by f:

D IVelAfen) )P = (Fx (90 9))° * (p @ 9)(2) = f(2)".

Let's try it out!




Plane tiling example

Non localized n = 240
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Frame tiling limitations

This method is expensive if we need many terms! Hence it should only
be used when we know something about the support of f, then the
inputs can be chosen to cover this area in the time-frequency plane.

We don't have to use an ONB though - when we have full control over
input, it can be replaced by well chosen uniform white noise.




Summary of methods

Fo(Fw(fx(9®9))) = fxW(g)(z) = f(2)
(fx(g®9) xp@p(z) = f* Vgl (2) = f(2)

g9 2
s e >))('Z)| ~ P Vgl () ~ £(2)?

Takeaway:
Quantum harmonic analysis provides an appropriate framework to
study localization operators!




Thank you!




