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Basics of time-frequency analysis I

In time-frequency analysis, a central object is the short-time Fourier
transform Vg : L2(Rd) → L2(R2d)

Vgψ(x, ω) =

∫
Rd

ψ(t)g(t− x)e−2πit·ω dt = ⟨ψ, π(x, ω)g⟩.

Example: ψ(t) = sin(|t|1.1), then |Vgψ|2 looks like:
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Basics of time-frequency analysis II
From the STFT, we can reconstruct the signal ψ as

ψ =

∫
R2d

Vgψ(z)π(z)g dz.

A localization operator is constructed by weighing this reconstruction
with a symbol f : R2d → R

Ag
fψ =

∫
R2d

f(z)Vgψ(z)π(z)g dz.

(Non-binary means f : R2d ̸→ {0, 1})

Let’s look at it visually!
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Example of localization operator action
ψ(t) = sin(t) + sin(5t)

|Vg(ψ)|2

7→

|Vg(Ag
fψ)|

2

7→

Used for:
▶ Quantization

procedure
▶ Pseudodifferential

operators
▶ Noise reduction
▶ Audio effects
▶ Machine learning

preprocessing
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The (inverse) problem

Given some information aboutAg
f , estimate the

symbol f

Previously investigated by:
▶ Abreu and Dörfler (2012),
▶ Abreu, Gröchenig and Romero

(2014),
▶ Luef and Skrettingland (2018),
▶ Romero and Speckbacher (2022)

Four approaches:

▶ Fourier deconvolution
▶ Look at spectral data of Ag

f

▶ Apply Ag
f to white noise

▶ Tiling the TF plane
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An (informative) naive solution
Reasonable idea:
The earlier sin(t) + sin(5t) allowed us to infer some information about
the symbol, what if we fill the plane with them?

...

Issue:
Interference, the spectrograms are not additive! Also hard to derive
error estimates in this setting - we need some hard analysis.
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Quantum harmonic analysis crash course I
▶ Function-operator convolutions:

f ⋆ S =

∫
R2d

f(z)π(z)Sπ(z)∗ dz, f ⋆ (g ⊗ g) = Ag
f .

▶ Operator-operator convolutions:

T ⋆ S(z) = tr
(
Tπ(z)Sπ(z)∗

)
, (ψ ⊗ ψ) ⋆ (φ⊗ φ)(z) = |Vφψ(z)|2.

▶ Fourier-Wigner transform:

FW (S)(z) = e−πix·ω tr(π(−z)S), FW (φ⊗ φ)(z) = eπix·ωVφφ(z),
Fσ(FW (φ⊗ φ))(z) =W (φ).
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Quantum harmonic analysis crash course II

Boundedness: ∥f ⋆ S∥Sp ≤ ∥f∥L1∥S∥Sp ,
∥f∥Lp∥S∥S1 ,

∥T ⋆ S∥Lp ≤ ∥T∥Sp∥S∥S1 .

Associativity: (f ⋆ S) ⋆ T (z) = f ∗ (S ⋆ T )(z),
(f ∗ g) ⋆ S = f ⋆ (g ⋆ S).

Fourier: FW (f ⋆ S)(z) = Fσ(f)(z) · FW (S)(z),

Fσ(T ⋆ S)(z) = FW (T )(z) · FW (S)(z).
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Perspective: Symbol recovery = QHA deconvolution

▶ Problem: How to approximately invert f 7→ Ag
f = f ⋆ (g ⊗ g)

▶ QHA Generalization: How to approximately invert f 7→ f ⋆ S

▶ Uniqueness:
f 7→ f ⋆ S injective ⇐⇒ FW (S) ̸= 0 ⇐⇒ Fσ(S ⋆ S) ̸= 0

Motivation:
For a regular operator S, L1(R2d) ⋆ S is dense in S1. Hence QHA
deconvolution is a general dequantization scheme

S1 ∋ A 7→ fA ∈ L1(R2d).

Can be used to compare operators by comparing associated functions.
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Fourier deconvolution

We can apply the convolution theorem to disentangle the
function-operator convolution.

FW (Ag
f )(z) = FW [f ⋆ (g ⊗ g)](z) = Fσ(f)(z) · FW (g ⊗ g)(z) = Fσ

(
f ∗W (g)

)
(z)

FσFσ = I =⇒ Fσ(FW (Ag
f )) = f ∗W (g)

This can be deconvolved!

▶ Requires full spectral knowledge (to compute FW (Ag
f )!)

▶ Requires knowledge of window / blind deconvolution

(We have computed the Weyl symbol of Ag
f )
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Weighted accumulated Wigner estimator
If S = g ⊗ g, then

f ⋆ S =
∑
k

λk(hk ⊗ hk) =⇒ f ∗W (g) =
∑
k

λkW (hk)

Figure: A symbol and the corresponding weighted accumulated Wigner
estimator.
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Spectral approach
Convolve with φ⊗ φ:

Ag
f ⋆ (φ⊗ φ)(z) = f ∗ (g ⊗ g) ⋆ (φ⊗ φ)(z) = f ∗ |Vgφ|2(z)

=

(∑
k

λk(hk ⊗ hk)

)
⋆
(
φ⊗ φ

)
(z) =

∑
k

λk|Vφhk(z)|2

If we know g, this turns into a deconvolution problem:

→
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Spectral approach - pure operator formulation

Taking the viewpoint of inverting f 7→ f ⋆ S, we can make this approach
a bit clearer:

(f ⋆ S) ⋆ S = f ∗ (S ⋆ S).

If we don’t know S, we can make a guess:

(f ⋆ S) ⋆ T = f ∗ (S ⋆ T ).

Want to choose T so that S ⋆ T is well-concentrated.
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Spectral approach - result formulation
Theorem
Let f ∈ L1(R2d) be real-valued and of bounded variation and g ∈ L2(Rd)
with ∥g∥L2 = 1. Then if Ag

f =
∑

k λk(hk ⊗ hk),∥∥∥∥∥
N∑
k=1

λk|Vghk|2 − f

∥∥∥∥∥
L1

≤
∞∑

k=N+1

|λk|+Var(f)

∫
R2d

|z||Vgg(z)|2 dz.

Moreover, in the N = ∞ case,
∞∑
k=1

λk|Vghk(z)|2 = f ∗ |Vgg|

which can be deconvolved in the sense that

f = F−1
σ

(
Fσ(f ∗ (S ⋆ S))

Fσ(S ⋆ S)

)
.
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White noise approach

Idea: Spectrogram of white noise is
approximately uniform

Intuitively: Applying localization oper-
ator to white noise should hence weigh
this based on f

Improvement: To get rid of noise, take
the average over many realizations
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White noise estimator
Formally and visually, what does this look like?

ρ(z) =
1

K

K∑
k=1

|Vφ(Ag
fNk)(z)|2 ≈

∑
m

λ2m|Vφhm(z)|2 ≈ f2 ∗ |Vφg|2(z) ≈ f(z)2.

ρ20 ρ200 ϑ f2 ∗ |Vgg|2 f2

Error estimation:∑
m

λ2m|Vφhm(z)|2 =
(
Ag

f

)2
⋆ (φ⊗ φ)(z) =

(
Ag

f2 + Error
)
⋆ (φ⊗ φ)

= f2 ∗ |Vφg|2 + Error ∗ (φ⊗ φ)
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White noise L1 error

Theorem
Let f ∈ Cd+2

c (R2d), ρ be given by ρ(z) = 1
K

∑K
k=1 |Vφ(A

g
fNk)(z)|2 with white

noise variance σ2, g, φ ∈ S(Rd) with ∥g∥L2 = ∥φ∥L2 = 1. Then there exists a
constant B dependent on f, g, φ and a constant C < 1 such that

P
(∫

R2d

∣∣∣∣ρ(z)σ2
− f(z)2

∣∣∣∣ dz > B + t

)
≤

∥f∥2L2

t
√
K

[
3

2
√
πC

erf
(√
CK

)
+

3

C
√
K
e−CK

]
= O

( 1√
K

)
.
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"Optimal" white noise
If we have control over the input, we could choose "optimal" white
noise with less unevenness.

Drawback is we lose probabilistic tools.
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Plane tiling
Idea: With white noise, we filled the time-frequency plane with white
noise - let’s instead fill it by an orthonormal basis!∑
n

|Vφen(z)|2 = I ⋆ (φ⊗φ)(z) = (1 ⋆φ⊗φ) ⋆ (φ⊗φ)(z) = 1 ∗ |Vφφ|2(z) = 1.

By replacing {en}n by
{
Ag

fen
}
n
this tiling will be weighed by f2:∑

n

|Vφ(Ag
fen)(z)|

2 =
∑
n

(Ag
fen ⊗Ag

fen) ⋆ (φ⊗ φ)(z)

= Ag
f

(∑
n

en ⊗ en

)
Ag

f ⋆ (φ⊗ φ)(z)

= (Ag
fIA

g
f ) ⋆ (φ⊗ φ)(z)

= (Ag
f )

2 ⋆ (φ⊗ φ)(z) ≈ Ag
f2 ⋆ (φ⊗ φ)(z) ≈ f(z)2.

Let’s try it out!
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Plane tiling example

0306090120150180210240∑
n=0

|Vφen(z)|2
0306090120150180210240∑

n=0

|Vφ(Ag
fen)(z)|

2
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Summary of methods (rank one)

Fσ(FW (f ⋆ (g ⊗ g))) = f ∗W (g)(z) ≈ f(z)(
f ⋆ (g ⊗ g)

)
⋆ φ⊗ φ(z) = f ∗ |Vφg|2(z) ≈ f(z)

|Vφ(Ag
f (N ))|2∑

n |Vφ(A
g
fen)(z)|

2 ≈ f2 ∗ |Vφg|2(z) ≈ f(z)2
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Future work
Mixed-state localization operators (f ⋆ S):
▶ Requires 1

K

∑K
k=1QS(f ⋆ S(Nk))

k→∞−−−→
∑

m λ
2
mQS(hm)

Replacing white noise by more general "ambient" input
▶ If |Vφ(N )|2 ≈ ρ, then |Vφ(Ag

fN )|2 ≈ f2 · ρ?
Replace white noise by "optimal" input
▶ If we can find U ∈ L2(Rd) such that |Vφ(U)|2 ≈ 1 on some large ball,

then |Vφ(Ag
fU)|2 should approximate f2 on that ball.

Optimal T in f ≈ f ∗ (S ⋆ T )

▶ In the rank-one case, given g find h that minimizes∫
R2d

|z||Vgh(z)|2 dz.

Thank you!


