

Four ways to recover the symbol of a non-binary localization operator

IWOTA 2023

Simon Halvdansson

Helsinki, August 3, 2023

NTNI

Basics of time-frequency analysis I

In time-frequency analysis, a central object is the *short-time Fourier* transform $V_g: L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^{2d})$

$$
V_g\psi(x,\omega) = \int_{\mathbb{R}^d} \psi(t)\overline{g(t-x)}e^{-2\pi it\cdot\omega} dt = \langle \psi, \pi(x,\omega)g \rangle.
$$

Example: $\psi(t) = \sin(|t|^{1.1})$, then $|V_g \psi|^2$ looks like:

Basics of time-frequency analysis II

From the STFT, we can reconstruct the signal ψ as

$$
\psi = \int_{\mathbb{R}^{2d}} V_g \psi(z) \pi(z) g dz.
$$

A **localization operator** is constructed by weighing this reconstruction with a $\mathsf{symbol}\: f: \mathbb{R}^{2d} \to \mathbb{R}$

$$
A_f^g \psi = \int_{\mathbb{R}^{2d}} f(z) V_g \psi(z) \pi(z) g dz.
$$

(Non-binary means $f:\mathbb{R}^{2d}\not\rightarrow\{0,1\}$)

Let's look at it visually!

NTNI

Example of localization operator action

 $\psi(t) = \sin(t) + \sin(5t)$

Used for:

- ▶ Quantization procedure
- ▶ Pseudodifferential operators
- ▶ Noise reduction
- ▶ Audio effects
- \blacktriangleright Machine learning preprocessing

 \bullet **NTNU**

The (inverse) problem

Given some information about $A^g_{\mu\nu}$ g_f , estimate the **symbol** f

Previously investigated by:

- ▶ Abreu and Dörfler (2012),
- ▶ Abreu, Gröchenig and Romero (2014),
- ▶ Luef and Skrettingland (2018),
- ▶ Romero and Speckbacher (2022)

Four approaches:

- ▶ Fourier deconvolution
- \blacktriangleright Look at spectral data of A^g_{μ} f
- Apply A_f^g g_f to white noise
- \blacktriangleright Tiling the TF plane

An (informative) naive solution

Reasonable idea:

The earlier $sin(t) + sin(5t)$ allowed us to infer some information about the symbol, what if we fill the plane with them?

Issue:

Interference, the spectrograms are not additive! Also hard to derive error estimates in this setting - we need some hard analysis.

Quantum harmonic analysis crash course I

▶ Function-operator convolutions:

$$
f \star S = \int_{\mathbb{R}^{2d}} f(z) \pi(z) S \pi(z)^* dz, \qquad f \star (g \otimes g) = A_f^g.
$$

▶ Operator-operator convolutions:

 $\mathcal{F}_W(S)(z) = e^{-\pi i x \cdot \omega} \operatorname{tr}(\pi(-z)S),$

$$
T \star S(z) = \text{tr}(T\pi(z)S\pi(z)^*), \qquad (\psi \otimes \psi) \star (\varphi \otimes \varphi)(z) = |V_{\varphi}\psi(z)|^2.
$$

▶ Fourier-Wigner transform:

$$
\mathcal{F}_W(\varphi \otimes \varphi)(z) = e^{\pi ix \cdot \omega} V_\varphi \varphi(z),
$$

$$
\mathcal{F}_\sigma(\mathcal{F}_W(\varphi \otimes \varphi))(z) = W(\varphi).
$$

Quantum harmonic analysis crash course II

Boundedness:

$$
||f * S||_{S^p} \le ||f||_{L^1} ||S||_{S^p},
$$

$$
||T * S||_{L^p} \le ||T||_{S^p} ||S||_{S^1},
$$

Associativity:

$$
(f \star S) \star T(z) = f \star (S \star T)(z),
$$

$$
(f \star g) \star S = f \star (g \star S).
$$

Fourier: $\mathcal{F}_W(f \star S)(z) = \mathcal{F}_\sigma(f)(z) \cdot \mathcal{F}_W(S)(z),$ $\mathcal{F}_{\sigma}(T \star S)(z) = \mathcal{F}_{W}(T)(z) \cdot \mathcal{F}_{W}(S)(z).$

NTNI

Perspective: Symbol recovery = QHA deconvolution

- ▶ Problem: How to approximately invert $f \mapsto A_f^g = f \star (g \otimes g)$
- **▶ QHA Generalization:** How to approximately invert $f \mapsto f \star S$
- ▶ **Uniqueness:**
	- $f \mapsto f \star S$ injective $\iff \mathcal{F}_W(S) \neq 0 \iff \mathcal{F}_\sigma(S \star S) \neq 0$

Motivation:

For a *regular* operator S , $L^1(\mathbb{R}^{2d})$ \star S is dense in $\mathcal{S}^1.$ Hence QHA deconvolution is a general dequantization scheme

$$
S^1 \ni A \mapsto f_A \in L^1(\mathbb{R}^{2d}).
$$

Can be used to compare operators by comparing associated functions.

Fourier deconvolution

We can apply the convolution theorem to disentangle the function-operator convolution.

$$
\mathcal{F}_W(A_f^g)(z) = \mathcal{F}_W[f \star (g \otimes g)](z) = \mathcal{F}_\sigma(f)(z) \cdot \mathcal{F}_W(g \otimes g)(z) = \mathcal{F}_\sigma\left(f \ast W(g)\right)(z)
$$

$$
\mathcal{F}_\sigma \mathcal{F}_\sigma = I \implies \mathcal{F}_\sigma(\mathcal{F}_W(A_f^g)) = f \ast W(g)
$$

This can be deconvolved!

- ▶ Requires full spectral knowledge (to compute $\mathcal{F}_W(A^g_H)$ $_{f}^{g})!)$
- ▶ Requires knowledge of window / blind deconvolution

(We have computed the Weyl symbol of A_f^g $\binom{g}{f}$

Weighted accumulated Wigner estimator

If $S = q \otimes q$, then

$$
f \star S = \sum_{k} \lambda_{k} (h_{k} \otimes h_{k}) \implies f \ast W(g) = \sum_{k} \lambda_{k} W(h_{k})
$$

Figure: A symbol and the corresponding weighted accumulated Wigner estimator.

11 / 22

 $\overline{\mathbf{C}}$ **NTNU**

Spectral approach

Convolve with $\varphi \otimes \varphi$:

$$
A_f^g \star (\varphi \otimes \varphi)(z) = f * (g \otimes g) \star (\varphi \otimes \varphi)(z) = \qquad f * |V_g \varphi|^2(z)
$$

$$
= \left(\sum_k \lambda_k (h_k \otimes h_k)\right) \star (\varphi \otimes \varphi)(z) = \sum_k \lambda_k |V_\varphi h_k(z)|^2
$$

If we know g , this turns into a deconvolution problem:

 \bullet **NTNU**

Spectral approach - pure operator formulation

Taking the viewpoint of inverting $f \mapsto f * S$, we can make this approach a bit clearer:

$$
(f \star S) \star S = f \ast (S \star S).
$$

If we don't know S , we can make a guess:

$$
(f \star S) \star T = f \ast (S \star T).
$$

Want to choose T so that $S \star T$ is well-concentrated.

NTNI

Spectral approach - result formulation

Theorem

Let $f\in L^1(\mathbb{R}^{2d})$ be real-valued and of bounded variation and $g\in L^2(\mathbb{R}^d)$ with $\|g\|_{L^2}=1$. Then if $A_f^g=\sum_k \lambda_k (h_k\otimes h_k)$,

$$
\left\| \sum_{k=1}^N \lambda_k |V_g h_k|^2 - f \right\|_{L^1} \le \sum_{k=N+1}^\infty |\lambda_k| + \text{Var}(f) \int_{\mathbb{R}^{2d}} |z| |V_g g(z)|^2 \, dz.
$$

Moreover, in the $N = \infty$ *case,*

$$
\sum_{k=1}^{\infty} \lambda_k |V_g h_k(z)|^2 = f * |V_g g|
$$

which can be deconvolved in the sense that

$$
f = \mathcal{F}_{\sigma}^{-1}\left(\frac{\mathcal{F}_{\sigma}(f * (S * S))}{\mathcal{F}_{\sigma}(S * S)}\right).
$$

White noise approach

Idea: Spectrogram of white noise is *approximately* uniform

Intuitively: Applying localization operator to white noise should hence weigh this based on f

Improvement: To get rid of noise, take the average over many realizations

$\overline{\mathbf{O}}$ **NTNU**

White noise estimator

Formally and visually, what does this look like?

$$
\rho(z) = \frac{1}{K} \sum_{k=1}^{K} |V_{\varphi}(A_f^g \mathcal{N}_k)(z)|^2 \approx \sum_m \lambda_m^2 |V_{\varphi}h_m(z)|^2 \approx f^2 * |V_{\varphi}g|^2(z) \approx f(z)^2.
$$

\n
$$
\rho_{20} \qquad \rho_{200} \qquad \vartheta \qquad f^2 * |V_g g|^2 \qquad f^2
$$

Error estimation:

$$
\sum_{m} \lambda_m^2 |V_{\varphi} h_m(z)|^2 = \left(A_f^g\right)^2 \star (\varphi \otimes \varphi)(z) = \left(A_{f^2}^g + \text{Error}\right) \star (\varphi \otimes \varphi)
$$

$$
= f^2 \star |V_{\varphi} g|^2 + \text{Error} \star (\varphi \otimes \varphi)
$$

16 / 22

White noise L ¹ **error**

Theorem

Let $f\in C^{d+2}_c(\mathbb{R}^{2d})$, ρ be given by $\rho(z)=\frac{1}{K}\sum_{k=1}^K|V_\varphi(A^g_f\mathcal{N}_k)(z)|^2$ with white ρ *noise variance* σ^2 *,* $g,\varphi\in\mathcal{S}(\mathbb{R}^d)$ *with* $\|g\|_{L^2}=\|\varphi\|_{L^2}=1.$ *Then there exists a constant* B *dependent on* f, g, φ *and a constant* C < 1 *such that*

$$
\mathbb{P}\left(\int_{\mathbb{R}^{2d}} \left| \frac{\rho(z)}{\sigma^2} - f(z)^2 \right| dz > B + t\right) \le \frac{\|f\|_{L^2}^2}{t\sqrt{K}} \left[\frac{3}{2\sqrt{\pi C}} \operatorname{erf}\left(\sqrt{CK}\right) + \frac{3}{C\sqrt{K}} e^{-CK} \right]
$$

$$
= O\left(\frac{1}{\sqrt{K}}\right).
$$

"Optimal" white noise

If we have control over the input, we could choose "optimal" white noise with less unevenness.

Drawback is we lose probabilistic tools.

$|O|$ **NTNU**

Plane tiling

Idea: With white noise, we filled the time-frequency plane with white noise - let's instead fill it by an orthonormal basis!

$$
\sum_{n} |V_{\varphi}e_n(z)|^2 = I \star (\varphi \otimes \varphi)(z) = (1 \star \varphi \otimes \varphi) \star (\varphi \otimes \varphi)(z) = 1 \star |V_{\varphi}\varphi|^2(z) = 1.
$$

By replacing $\{e_n\}_n$ by $\{A_f^g\}$ $\left\{ \left\vert \mathcal{F}_{n}\right\vert \right\} _{n}$ this tiling will be weighed by f^{2} :

$$
\sum_{n} |V_{\varphi}(A_{f}^{g}e_{n})(z)|^{2} = \sum_{n} (A_{f}^{g}e_{n} \otimes A_{f}^{g}e_{n}) \star (\varphi \otimes \varphi)(z)
$$

$$
= A_{f}^{g} \left(\sum_{n} e_{n} \otimes e_{n} \right) A_{f}^{g} \star (\varphi \otimes \varphi)(z)
$$

$$
= (A_{f}^{g} I A_{f}^{g}) \star (\varphi \otimes \varphi)(z)
$$

$$
= (A_{f}^{g})^{2} \star (\varphi \otimes \varphi)(z) \approx A_{f^{2}}^{g} \star (\varphi \otimes \varphi)(z) \approx f(z)^{2}.
$$

Let's try it out!

$\overline{\mathbf{C}}$ **NTNU**

Plane tiling example

\bullet **NTNU**

Summary of methods (rank one)

$$
\mathcal{F}_{\sigma}(\mathcal{F}_{W}(f \star (g \otimes g))) = f \star W(g)(z) \approx f(z)
$$

\n
$$
(f \star (g \otimes g)) \star \varphi \otimes \varphi(z) = f \star |V_{\varphi}g|^{2}(z) \approx f(z)
$$

\n
$$
\frac{|V_{\varphi}(A_{f}^{g}(N))|^{2}}{\sum_{n}|V_{\varphi}(A_{f}^{g}e_{n})(z)|^{2}} \approx f^{2} \star |V_{\varphi}g|^{2}(z) \approx f(z)^{2}
$$

Future work

Mixed-state localization operators ($f \star S$ **):**

▶ Requires $\frac{1}{K} \sum_{k=1}^{K} Q_S(f \star S(\mathcal{N}_k)) \xrightarrow{k \to \infty} \sum_m \lambda_m^2 Q_S(h_m)$

Replacing white noise by more general "ambient" input

 \blacktriangleright If $|V_{\varphi}(\mathcal{N})|^2 \approx \rho$, then $|V_{\varphi}(A_f^g \mathcal{N})|^2 \approx f^2 \cdot \rho$?

Replace white noise by "optimal" input

▶ If we can find $U \in L^2(\mathbb{R}^d)$ such that $|V_\varphi(U)|^2 \approx 1$ on some large ball, then $|V_{\varphi}(A_{f}^{g}U)|^{2}$ should approximate f^{2} on that ball.

Optimal T **in** $f \approx f * (S * T)$

 \blacktriangleright In the rank-one case, given q find h that minimizes

$$
\int_{\mathbb{R}^{2d}}|z||V_{g}h(z)|^{2} dz.
$$

Thank you!