

Quantum harmonic analysis on locally compact groups

Simon Halvdansson IWOTA 2022 Kraków

What and why of quantum harmonic analysis

Quantum harmonic analysis is:

- A framework where convolutions between functions and operators and operators and operators are defined.

We care about it because:

- It provides a new lens to view classical objects.

Our contribution:

- Extracting the essence of quantum harmonic analysis to extend it to arbitrary locally compact groups.

"Classical" quantum harmonic analysis

Roots in quantum physics and time-frequency analysis, defined using the following representation of the Weyl-Heisenberg group

 $\pi(x,\omega)\psi(t)=e^{2\pi i \omega \cdot t}\psi(t-x)$ **"Time-frequency shift"**

here $\pi: \mathbb{R}^{2d} \rightarrow \mathcal{U}(L^2(\mathbb{R}^d))$ is a square integrable representation.

These operators are central in time-frequency analysis

$$
V_{\varphi}\psi(x,\omega)=\langle \psi,\pi(x,\omega)\varphi\rangle=\int_{\mathbb{R}^d}\psi(t)e^{-2\pi i\omega\cdot t}\overline{\varphi(t-x)}\,dt.
$$

\bullet **NTNU**

New convolutions

Regular convolutions are defined as

$$
f * g(x) = \int_{\mathbb{R}} f(y) T_{-y} g(x) dy
$$

to get this for operators, we need to be able to integrate and translate operators.

$$
T_z f \to \alpha_z(S) = \pi(z)^* S \pi(z),
$$

$$
\int f \to \text{tr}(S).
$$

This gives rise to the following definitions:

$$
f \star S = \int_{\mathbb{R}^{2d}} f(z) \alpha_z(S) dz
$$

$$
T \star S(z) = \text{tr}(T \alpha_z(S))
$$

(function \star operator = operator),

 $T \star S(z) = \text{tr}(T \alpha_z(S))$ (operator \star operator = function).

Convolution properties

 $\textbf{Boundedness:} \quad \qquad \|f \star S\|_{\mathcal{S}^p} \leq \; \frac{\|f\|_{L^1} \|S\|_{\mathcal{S}^p}}{\|f\|_{L^p} \|S\|_{\mathcal{S}^1},}$ $||f||_{L^p}||S||_{S^1},$ $||T \star S||_{L^p} < ||T||_{S^p} ||S||_{S^1}.$

Associativity: $(f \star S) \star T(z) = f \star (S \star T)(z),$

Adjoints:

 $\mathcal{A}_S: L^p(G) \to \mathcal{S}^p$, $f \mapsto f \star S$, $\mathcal{B}_S : \mathcal{S}^p \to L^p(G), \qquad T \mapsto T \star S,$ $\mathcal{A}_S^* = \mathcal{B}_S.$

 $(f * q) * S = f * (q * S).$

Fourier:

 $\mathcal{F}_W(S)(z) = \text{tr}(\pi(-z)S)$ $\mathcal{F}_W(f \star S) = \mathcal{F}_\sigma(f) \cdot \mathcal{F}_W(S),$ $\mathcal{F}_W(T \star S)(z) = \mathcal{F}_W(T)(z) \cdot \mathcal{F}_W(S)(z).$

NTNI

What we get from quantum harmonic analysis

- \blacktriangleright Function-operator convolutions coincide with localization operators from time-frequency analysis and are unitarily equivalent to Gabor-Toeplitz operators.
- ▶ Operator-operator convolutions coincide with Cohen's class of time-frequency distributions which generalize the classical spectrogram.

This makes several problems easier to approach:

- \blacktriangleright Cohen phase retrieval uniqueness
- ▶ Symbol recovery for localization operators
- ▶ Compactness characterization of Gabor-Toeplitz operators
- \blacktriangleright Analysis of convolutional neural networks

Locally compact setting

Why do we care about the locally compact setting?

- \blacktriangleright Affine group
- \blacktriangleright Similitude group
- \blacktriangleright Shearlet group
- ▶ Affine Poincaré group

What do we change in the locally compact setting?

- ▶ Weyl-Heisenberg $\mathbb{R}^{2d} \to$ locally compact group G ,
- **►** Time-frequency shift $\pi \rightarrow$ square integrable representation σ of G ,
- ▶ Signals in $L^2(\mathbb{R}^d) \to$ Hilbert space H ,
- ▶ Lebesgue measure $dz \rightarrow (right)$ Haar measure $d\mu_B$.

New(er) convolutions

G

 $f \star_G S =$

$$
f(x)\sigma(x)^*S\sigma(x) d\mu_R(x)
$$
, $T \star_G S(x) = \text{tr}(T\sigma(x)^*S\sigma(x))$.

Admissibility of operators

Integrability of operator-operator convolutions is natural and can be deduced as a consequence of the Duflo-Moore orthogonality relation

$$
\int_G \langle \psi_1, \sigma(x)^* \phi_1 \rangle \overline{\langle \psi_2, \sigma(x)^* \phi_2 \rangle} d\mu_R(x) = \langle \psi_1, \psi_2 \rangle \overline{\langle \mathcal{D}^{-1} \phi_1, \mathcal{D}^{-1} \phi_2 \rangle}
$$

\n
$$
\implies \int_G T \star_G S(x) d\mu_R(x) = \text{tr}(T) \text{tr}(\mathcal{D}^{-1} S \mathcal{D}^{-1}).
$$

We say that S for which this is finite are **admissible**.

Admissibility characterizes nice mappings

Theorem

Suppose $\Gamma: L^{\infty}(G) \rightarrow B(\mathcal{H})$ *satisfies*

- **1.** *Positive functions* 7→ *positive operators,*
- **2.** $1 \mapsto I_{\mathcal{H}}$
- **3.** *Weak* weak* continuous,*

4.
$$
\sigma(x)^* \Gamma(f) \sigma(x) = \Gamma(f(\cdot x^{-1})).
$$

Then

$$
\Gamma(f) = f \star_G S
$$

where S *is admissible.*

New mapping properties

The mapping bounds now look like

$$
||f \star_G S||_{S^p} \le ||f||_{L_r^1(G)} ||S||_{S^p},
$$

\n
$$
||f||_{L_r^p(G)} ||S||_{S^1}^{1/p} ||\mathcal{D}^{-1}S\mathcal{D}^{-1}||_{S^1}^{1/q},
$$

\n
$$
||T \star_G S||_{L^{\infty}(G)} \le ||S||_{S^p} ||T||_{S^q},
$$

\n
$$
||T \star_G S||_{L_r^p(G)} \le ||T||_{S^p} ||S||_{S^1}^{1/q} ||\mathcal{D}^{-1}S\mathcal{D}^{-1}||_{S^1}^{1/p}.
$$

The same mappings

$$
\mathcal{A}_S: L_r^p(G) \to \mathcal{S}^p, \qquad f \mapsto f \star_G S,
$$

$$
\mathcal{B}_S: \mathcal{S}^p \to L_r^p(G), \qquad T \mapsto T \star_G S
$$

are only adjoints when S is admissible.

Wiener's Tauberian theorem

We say an operator or function is p -regular if

$$
\overline{\operatorname{span}\left\{g(\cdot x^{-1})\right\}_{x\in G}} = L^p_r(G), \qquad \overline{\operatorname{span}\left\{\sigma(x)^* S \sigma(x)\right\}_{x\in G}} = \mathcal{S}^p.
$$

The following are equivalent:

- **1.** S is p-regular,
- **2.** If $f \in L_r^q(G)$ and $f \star_G S = 0$, then $f = 0$,
- **3.** $S^p \star_G S$ is dense in $L^p_r(G)$,
- **4.** If $T \in \mathcal{S}^q$ and $T \star_G S = 0$, then $T = 0$,
- **5.** $L_r^p(G) \star_G S$ is dense in S^p ,
- **6.** $S \star_G S$ is *p*-regular,
- **7.** For any regular $T \in S^1, T \star_G S$ is p -regular.

Berezin-Lieb inequalities

Theorem

Let Φ *be convex and* S *admissible, then*

$$
\int_G \Phi \circ (T \star_G S)(x) d\mu_R(x) \le \text{tr} \left(\Phi(\text{tr}(S)T) \frac{\text{tr}(\mathcal{D}^{-1} S \mathcal{D}^{-1})}{\text{tr}(S)},
$$

tr
$$
\text{tr}(\Phi(f \star_G S)) \le \frac{\text{tr}(S)}{\text{tr}(\mathcal{D}^{-1} S \mathcal{D}^{-1})} \int_G \Phi\left(\text{tr}(\mathcal{D}^{-1} S \mathcal{D}^{-1}) f(x)\right) d\mu_R(x).
$$

Basically Jensen's inequality for convex functions but for functions and operators!

Thank you!

