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Problem: Fourier transform is insufficient

Our starting point is the Fourier transform
F(f)(w) = f / f(t) e~ 2mitw 1y
We care about signals where frequency varies over time, but

F(f(- = o)) = ™™ F(f)w) = 1f@)| = Tef@)],

i.e., the spectrum |f| is invariant under translations 7.




An illustrative example

FFT: Pure Low-Frequency Sinusoid
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Solution: Joint time-frequency representation
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Detailing the STFT

We call this the short-time Fourier transform (STFT)
Vof (@) = FUOGC=2)) = | F0alE=a)e > ar
Vy : L*(R) — L*(R?) is a linear time-frequency representation and

(Vo fr, Vaf2) 22y = (f1, fo) L2 (w)
when g is chosen appropriately.

Using
» Translation T, f(t) = f(t — x)
> Modulation M, f(t) = > f(t)
> Time-frequency shift n(z,w)f = M, T, f

we can write V, f(z,w) = (f, n(z,w)g) 2. We will J \
write z = (z,w) € R? as a shorthand. Ui




B Reconstruction

NTNU The adjoint of the STFT mapping, V" : L?*(R?) — L2(R)

Vi = [ Femgds
is a right inverse of the STFT, but not a left inverse:

Vo Vg = I12w), VoVy = Py, r2w)) -
—_—— -

orthogonal projection

_ ‘f = [ Vet ()9 dz

Not every F' € L*(R?) can be written as F' = V, f for some f € L*(R)




Restricting the reconstruction
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B Time-frequency distributions

NTNU

» Spectrogram, squared modulus of STFT |V, f|?
» Wigner distribution

W(f,q)(x,w) /ft—x/2) (t+ /e > dt V

» Smoothed versions of the Wigner
distributions (Cohen’s class)




B Gabor frames / discretization

NTNU . .
We can only sample V, f at discrete points

> / Vo f(2)]*dz = ||f||32 (continuous)
RQ

> > Vef NP ~ [If112- (discrete)
AEA

We say A C R? induces a Gabor frame if

Allflze < Y IVef P < BIfIIZ:,

AEA

for some A, B > 0.

\J

Figure: Example of a subset
A of R? which can be used
for sampling.
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B Generalizing harmonic analysis to operators

NTNU

In harmonic analysis we deal = Wewantto setup similar notions for
with functions f and their: operators S : L*(R) — L*(R):

» Translations T, > Translations «,(S) = n(z)S7(2)*
Traces tr(S) = >, (Sen, en)

Fourier transform Fy,

Integrals [
Fourier transform F
Convolutions %

>
>
» Convolutions x
> 1S[ls» = tr(|S|P)!/P

LP spaces



Operator convolutions

QHA meta statement: Replace

» Functions — Operators g— S
» Translations — Operator translations T, = a,
> Integrals — Traces [ —tr

FroG)= [ Ty
—
fr8=| f(2)a.(S) dz S*T(z) = tr(Sa,(T))
(Function—opﬂzrator convolution) (Operator-operator convolution)




An operator Fourier transform

There is already a well-known Fourier transform for operators, the
Fourier-Wigner transform

Fw : Sldk—> Co(R?), Fw (S)(2) = tr(S7(—2)).

Riemann-Lebesgue

For functions on R?? we will use the symplectic Fourier transform

FoA£)e) = [ fe ot




B Standard properties hold

NTNU

Harmonic analysis | Quantum harmonic analysis

1f*Sllse < [z [I1S]se
* <
Hf gHLP > HfHLngHLp HT*SHLP < HTHSlHSHSP

(fxg)xh=[x(gxh) ;:Ej:f)):((j{:;):g

F(f+g)=F(f) Flg) ijv(ﬁf : SS)):: ;VUV((J;))];V:V@)




Weyl quantization

Weyl quantization is a map from functions on phase space to
operators on L2(R), f — Ay

(S*(L*(R)), o, *)

l]:W a,
ey

(L2(R2),5,7) —27 (L2(R2), 1, ")

It is an isometric bijection from L?(R?) to S?(L%(R)).

Operator convolutions = convolutions of Weyl symbols:

Af*g:f*Ag, Af*Ag:f*g.
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Paper A: Quantum harmonic analysis on
locally compact groups

Published in Journal of Functional Analysis

Like in abstract harmonic analysis, we replace
> R
> L*(RT) —
> 1:R¥ 5 Y(LARY)) — [0 : G = U(H))

[Functions f € LY(G), operators S ¢ Sl(H)]

In abstract time-frequency analysis, we deal with ad-
missibility of wavelets. For us, T x S € L'(G) is de-
pendent on

D 1sDleS! <« Sisanadmissible operator.




Paper B: Measure-operator convolutions and
B applications to mixed-state Gabor multipliers

IR Published in Sampling Theory, Signal Processing, and Data Analysis,
joint work with Franz Luef and Hans Feichtinger

Function-operator convolution:

fxS= f(2)a.(S) dz.

R2d

Perhaps measure-operator convolution is

xS = /de 0 (S) du(z)?

Goals:

» Motivate definition from first principles

» Use results to study Gabor multipliers which can be
realized as measure-operator convolutions




Extending actions

» Standard convolutions can be defined by extending the action
R x LY(R) > (x, f) + Ty f to M(R) x L'(R)

» We do the same for R? x S! 3 (z, 5) — a.(9) to get a form of
weighted translation

Theorem
The map e, : R?4 x St — St (2,S5) = 7(2)S7(2)* has a unique bounded
essential extension to M(R??) x S' — S*. That extension satisfies

() f,g) = / (r(2)S7(2)* £, g) du(2).




B Application: Approximating localization operators

NTNU

The Gabor multiplier Gy, , ; as-
sociated to the lattice A3 =
aZ% x BZ% can be written as

Grap = Has*(9®9)
where 7’5 is a discrete mea-
sure.

Theorem
Let (ua)a be a bounded and tight net which
converges weak-* to 1o and S € S. Then

aler;o‘|pa*S—u0*S|’$1 =0.

Theorem
Let m € W(L>, %) (R??) be
Riemann-integrable and S € S*. Then

Jim lugs xS —mx S|g, = 0.

In particular, |G? . — A%llst = 0asa, 8 — 0.

mIQVB




Paper C: Weyl Quantization of Exponential Lie Groups
B for Square Integrable Representations

YR Preprint, joint work with Stine Marie Berge

Goal:

Set up quantization beyond Weyl-Heisenberg and
affine groups.

» Need connected exponential Lie group and
square integrable representation

> Replace symplectic Fourier transform by
Fourier-Kirillov transform

(S*(#). o, )

l]—'w a
(Fw (S, 8 VA7) — fKO (LYG), 8, 7)




Quantization properties

» Translation and conjugation are respected
ax(Af) = Af(,x—l), ; = AJF
» The map is a unitary H*-algebra isomorphism
A:LA(G) — S*(H).

» Wigner distribution can be realized as dequantization of
rank-one operator

W, 9)(z) = aypee(r) = Fro(Fw(y @ ¢)) (),

not the object whici induces the quantization.




Paper D: Five ways to recover the symbol of a
non-binary localization operator

Published in Journal of Pseudo-Differential Operators and Applications

Standard problem: Find Q2 from information about
A
» Previously studied by Abreu, Dérfler, Gréchenig,
Romero, Luef, Skrettingland, Speckbacher
» Used eigenfunctions and image of white noise
Goal:
» Adapt old methods to work for Af, where
m € L'(R?)
» Develop new methods
» Implement all methods in MATLAB




Formulations

A9 = N ® hy,)
k

> > k| Vyhe(2)|? + Weighted accumulated spectrogram

> > L AW (hy)(2) < Weighted accumulated Wigner distribution
> LSF Ve (AfN)(2)]? « White noise estimator

> > |Vy(Afen)(2)? « Plane tiling estimator

> V, (A% (7m(2)g))(z) + Gabor projection




Examples
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Paper E: On a time-frequency blurring operator
B with applications in data augmentation

IR Published in Journal of Fourier Analysis and Applications

What if instead of multiplying the STFT (localization
operator) we convolve it (blurring operator)?

Bif =V, (uxVyf)

Mathematically, we look at:

» Boundedness of operator between L?, MP and
Schwartz spaces

» (Non)-compactness
» Positivity condition




Appllcatlon

The operator shows promise as a data augmen-
tation tool.

Table: Average ViT test accuracies with standard
errors (%) for different augmentation setups.

Augmentation | Accuracy
None 89.17+0.20
White noise 90.7240.09
SpecAugment 90.61+0.14
STFT-blur 90.40+0.15
SpecBlur 91.29+0.13
White noise + SpecAug | 91.80+0.15
STFT-blur + SpecBlur 91.72+0.12
All 92.70+0.08




Paper F: On accumulated spectrograms

for Gabor frames
YR Published in Journal of Mathematical Analysis and Applications

Classical result:
If Ag) = Zk )\k(hk & hk), then

(19201
> Vahil* = xa
k=1

«

accumulated spectrogram

< 0,09

Ll

Goal:
Show corresponding results for the Gabor multi-

plier GY, , associated to the lattice A.




Results
E We only observe QN A, consequently

» Errors are in ¢*(A) instead of L!(R?9)
» We measure the perimeter by 95 Q = AN (9Q + B(0,7)).

Theorem

Let g € M} (R?) and A be such that (g, A) induces a frame with frame constants
A,B > 0,7 > 0andQ C R?? be compact. Then there exists a constant C
depending only on r and d such that

) B—A
lpa — xalln@ay < Co#OM QU+ 2——F#(QNA) + —5—
B lg1l72

where rn = r + lpy and [,y is the diameter of the fundamental domain of A.

> A=B = |lpa — xallan) < C#d + D
» Estimate is tight:

C1#03*B(0, R) < ||pp(o,r) — XB(0,R) ler (a) < Co#0\* B(0, R)




Paper G: Empirical plunge profiles of time-frequency
B localization operators

IR Preprint
For localization operators Af,:

> First ~ || eigenvalues =~ 1
> Then < |99 eigenvalues not 1 nor 0 (plunge region)
» Remaining eigenvalues ~ 0

Lots of related results but no progress since late 1980s.

Goal: Describe eigenvalue behavior in more detail
Approach:

> Only eigenvalues for Q = B(0, R) known
> Extend this result to more Q
» Conjecture universality

» Test numerically




B Rotationally-invariant symbol + conjecture

NTNU Theorem

Let Q c R? be a compact, regular closed and rotationally invariant set
with a finite number of connected components, and let \I*? the k-th
eigenvalue of AY. Then

1 — |RQ| 1
RQ _ 1 4
AL 2erfc (\/2 ORA] >‘ O( > .

Conjecture

Let @ ¢ R? be compact and regular closed, and let \! be the k-th
eigenvalue of AY). Then

1 RQ 1
)\kRﬂ2erfc<\/2 |5‘]|%Q||>‘ O(R>.




Numerics

Symbol with Boundary

Difference
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Figure: Symbol, eigenvalues and discrepancy to erfc



Thank you!
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