
N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy Extensions of Quantum Harmonic

Analysis and Applications to
Time-Frequency Analysis
PhD Defense
Simon Halvdansson
June 11, 2025
Supervisor: Franz Luef
Co-supervisor: Sigrid Grepstad
Opponents: Elena Cordero and Bruno Torresani



2 / 36

Extensions of

Quantum harmonic
analysis

αz(S) = π(z)Sπ(z)∗

... and applications to

Time-frequency analysis

Operator
convolu-
tions

Operator
Fourier

transform

Weyl
quantization

Short-time
Fourier

transform

Localization
operators Discretization

dealt with in papers:

A B C D E F G
First, some basics
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Problem: Fourier transform is insufficient

Our starting point is the Fourier transform

F(f)(ω) = f̂(ω) =

∫
R
f(t)e−2πitω dt.

We care about signals where frequency varies over time, but

F(f(· − x))(ω) = e2πixωF(f)(ω) =⇒ |f̂(ω)| = |T̂xf(ω)|,

i.e., the spectrum |f̂ | is invariant under translations Tx.
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An illustrative example
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Detailing the STFT
We call this the short-time Fourier transform (STFT)

Vgf(x, ω) = F(f(·)g(· − x))(ω) =
∫
R
f(t)g(t− x)e−2πitω dt.

Vg : L
2(R)→ L2(R2) is a linear time-frequency representation and

⟨Vgf1, Vgf2⟩L2(R2) = ⟨f1, f2⟩L2(R)

when g is chosen appropriately.

Using
▶ Translation Txf(t) = f(t− x)
▶ ModulationMωf(t) = e2πiωtf(t)

▶ Time-frequency shift π(x, ω)f =MωTxf

we can write Vgf(x, ω) = ⟨f, π(x, ω)g⟩L2 . We will
write z = (x, ω) ∈ R2 as a shorthand.
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Reconstruction

The adjoint of the STFT mapping, V ∗
g : L2(R2)→ L2(R)

V ∗
g =

∫
R2

F (z)π(z)g dz,

is a right inverse of the STFT, but not a left inverse:

V ∗
g Vg = IL2(R),︸ ︷︷ ︸

=⇒ f =

∫
R2

Vgf(z)π(z)g dz

VgV
∗
g = PVg(L2(R))︸ ︷︷ ︸

orthogonal projection

.

Not every F ∈ L2(R2) can be written as F = Vgf for some f ∈ L2(R)
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Restricting the reconstruction

By multiplying Vgf by a function m : R2 → C
prior to reconstruction, we get a localization
operator:

Agmf =

∫
R2

m(z)Vgf(z)π(z)g dz
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Time-frequency distributions

▶ Spectrogram, squared modulus of STFT |Vgf |2
▶ Wigner distribution

W (f, g)(x, ω) =

∫
R
f(t− x/2)g(t+ x/2)e−2πiωt dt

▶ Smoothed versions of the Wigner
distributions (Cohen’s class)
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Gabor frames / discretization

We can only sample Vgf at discrete points

▶
∫
R2

|Vgf(z)|2 dz = ∥f∥2L2 (continuous)

▶
∑
λ∈Λ
|Vgf(λ)|2 ∼ ∥f∥2L2 (discrete)

We say Λ ⊂ R2 induces a Gabor frame if

A∥f∥2L2 ≤
∑
λ∈Λ
|Vgf(λ)|2 ≤ B∥f∥2L2 ,

for some A,B > 0. Figure: Example of a subset
Λ of R2 which can be used
for sampling.
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Generalizing harmonic analysis to operators

In harmonic analysis we deal
with functions f and their:
▶ Translations Tx
▶ Integrals

∫
▶ Fourier transform F
▶ Convolutions ∗
▶ Lp spaces

Wewant to set up similar notions for
operators S : L2(R)→ L2(R):
▶ Translations αz(S) = π(z)Sπ(z)∗

▶ Traces tr(S) =
∑

n⟨Sen, en⟩
▶ Fourier transform FW

▶ Convolutions ⋆
▶ ∥S∥Sp = tr(|S|p)1/p
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Operator convolutions

QHA meta statement: Replace
▶ Functions→ Operators g → S

▶ Translations→ Operator translations Tz → αz

▶ Integrals→ Traces
∫
→ tr

f ∗ g(z) =
∫
R2d

f(y)Tz ǧ(y) dy

f ⋆ S =

∫
R2d

f(z)αz(S) dz S ⋆ T (z) = tr(Sαz(Ť ))

(Function-operator convolution) (Operator-operator convolution)
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An operator Fourier transform

There is already a well-known Fourier transform for operators, the
Fourier-Wigner transform

FW : S1 → C0(R2), FW (S)(z) = tr(Sπ(−z)).

Riemann–Lebesgue

For functions on R2d we will use the symplectic Fourier transform

Fσ(f)(z) =
∫
R2

f(z′) e−2πi σ(z,z′) dz′.
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Standard properties hold

Harmonic analysis Quantum harmonic analysis

∥f ∗ g∥Lp ≤ ∥f∥L1∥g∥Lp
∥f ⋆ S∥Sp ≤ ∥f∥L1∥S∥Sp

∥T ⋆ S∥Lp ≤ ∥T∥S1∥S∥Sp

(f ∗ g) ∗ h = f ∗ (g ∗ h) f ∗ (S ⋆ T ) = (f ⋆ S) ⋆ T
f ⋆ (g ⋆ T ) = (f ∗ g) ⋆ T

F(f ∗ g) = F(f) · F(g) FW (f ⋆ S) = Fσ(f) · FW (S)
Fσ(T ⋆ S) = FW (T ) · FW (S)
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Weyl quantization

Weyl quantization is a map from functions on phase space to
operators on L2(R), f 7→ Af(

S2(L2(R)), ◦, ∗
)

(
L2(R2), ♮, ˇ

) (
L2(R2), ♯,

)FW
a

Fσ

It is an isometric bijection from L2(R2) to S2(L2(R)).

Operator convolutions = convolutions of Weyl symbols:

Af∗g = f ⋆ Ag, Af ⋆ Ag = f ∗ ǧ.
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Paper A: Quantum harmonic analysis on
locally compact groups
Published in Journal of Functional Analysis

Like in abstract harmonic analysis, we replace
▶ R2d −→ G

▶ L2(Rd) −→ H
▶ π : R2d → U(L2(Rd)) −→ σ : G → U(H)

Functions f ∈ L1(G), operators S ∈ S1(H)

In abstract time-frequency analysis, we deal with ad-
missibility of wavelets. For us, T ⋆ S ∈ L1(G) is de-
pendent on

D−1SD−1 ∈ S1 ⇐⇒ S is an admissible operator.



21 / 36

Paper B: Measure-operator convolutions and
applications to mixed-state Gabor multipliers
Published in Sampling Theory, Signal Processing, and Data Analysis,
joint work with Franz Luef and Hans Feichtinger

Function-operator convolution:

f ⋆ S =

∫
R2d

f(z)αz(S) dz.

Perhapsmeasure-operator convolution is

µ ⋆ S =

∫
R2d

αz(S) dµ(z)?

Goals:
▶ Motivate definition from first principles
▶ Use results to study Gabor multipliers which can be

realized as measure-operator convolutions
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Extending actions

▶ Standard convolutions can be defined by extending the action
R× L1(R) ∋ (x, f) 7→ Txf toM(R)× L1(R)

▶ We do the same for R2 × S1 ∋ (z, S) 7→ αz(S) to get a form of
weighted translation

Theorem
The map •ρ : R2d × S1 → S1, (z, S) 7→ π(z)Sπ(z)∗ has a unique bounded
essential extension toM(R2d)× S1 → S1. That extension satisfies

〈
(µ ⋆ S)f, g

〉
=

∫
⟨π(z)Sπ(z)∗f, g⟩ dµ(z).
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Application: Approximating localization operators

The Gabor multiplierGgm,α,β as-
sociated to the lattice Λα,β =
αZd × βZd can be written as

Ggm,α,β = µmα,β ⋆ (g ⊗ g)

where µmα,β is a discrete mea-
sure.

Theorem
Let (µα)α be a bounded and tight net which
converges weak-* to µ0 and S ∈ S1. Then

lim
α→∞

∥∥µα ⋆ S − µ0 ⋆ S
∥∥
S1 = 0.

Theorem
Letm ∈W (L∞, ℓ1)(R2d) be
Riemann-integrable and S ∈ S1. Then

lim
α,β→0

∥∥µm
α,β ⋆ S −m ⋆ S

∥∥
S1 = 0.

In particular, ∥Ggm,α,β −A
g
m∥S1 → 0 as α, β → 0.
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Paper C: Weyl Quantization of Exponential Lie Groups
for Square Integrable Representations
Preprint, joint work with Stine Marie Berge

Goal:
Set up quantization beyond Weyl-Heisenberg and
affine groups.
▶ Need connected exponential Lie group and

square integrable representation
▶ Replace symplectic Fourier transform by

Fourier-Kirillov transform

(
S2(H), ◦, ∗

)
(
FW (S2), ♮,

√
∆(·) ˇ

) (
L2
r(G), ♯,

)FW
a

FKO
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Quantization properties

▶ Translation and conjugation are respected

αx(Af ) = Af(·x−1), A∗
f = Af̄ .

▶ The map is a unitary H∗-algebra isomorphism

A : L2
r(G)→ S2(H).

▶ Wigner distribution can be realized as dequantization of
rank-one operator

W (ψ, ϕ)(x) = aψ⊗ϕ(x) = FKO(FW(ψ ⊗ ϕ))(x),

not the object whici induces the quantization.
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Paper D: Five ways to recover the symbol of a
non-binary localization operator
Published in Journal of Pseudo-Differential Operators and Applications

Standard problem: Find Ω from information about
AgΩ
▶ Previously studied by Abreu, Dörfler, Gröchenig,

Romero, Luef, Skrettingland, Speckbacher
▶ Used eigenfunctions and image of white noise

Goal:
▶ Adapt old methods to work for Agm where
m ∈ L1(R2)

▶ Develop new methods
▶ Implement all methods in MATLAB



27 / 36

Formulations

Agm =
∑
k

λk(hk ⊗ hk)

▶
∑

k λk|Vghk(z)|2 ←Weighted accumulated spectrogram
▶

∑
k λkW (hk)(z)←Weighted accumulated Wigner distribution

▶ 1
K

∑K
k=1 |Vg(A

g
mN )(z)|2 ←White noise estimator

▶
∑

n |Vg(A
g
men)(z)|2 ← Plane tiling estimator

▶ Vg(A
g
m(π(z)g))(z)← Gabor projection
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Examples
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Paper E: On a time-frequency blurring operator
with applications in data augmentation
Published in Journal of Fourier Analysis and Applications

What if instead of multiplying the STFT (localization
operator) we convolve it (blurring operator)?

Bg
µf = V ∗

g (µ ∗ Vgf)

Mathematically, we look at:
▶ Boundedness of operator between Lp,Mp and

Schwartz spaces
▶ (Non)-compactness
▶ Positivity condition



30 / 36

Application
The operator shows promise as a data augmen-
tation tool.

Table: Average ViT test accuracies with standard
errors (%) for different augmentation setups.

Augmentation Accuracy
None 89.17±0.20

White noise 90.72±0.09

SpecAugment 90.61±0.14

STFT-blur 90.40±0.15

SpecBlur 91.29±0.13

White noise + SpecAug 91.80±0.15

STFT-blur + SpecBlur 91.72±0.12

All 92.70±0.08
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Paper F: On accumulated spectrograms
for Gabor frames
Published in Journal of Mathematical Analysis and Applications

Classical result:
If AgΩ =

∑
k λk(hk ⊗ hk), then∥∥∥∥∥∥

⌈|Ω|⌉∑
k=1

|Vghk|2 − χΩ

∥∥∥∥∥∥
L1

≤ Cg|∂Ω|.

Goal:
Show corresponding results for the Gabor multi-
plier GgΩ,Λ associated to the lattice Λ.

accumulated spectrogram
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Results
We only observe Ω ∩ Λ, consequently
▶ Errors are in ℓ1(Λ) instead of L1(R2d)
▶ We measure the perimeter by ∂rΛΩ = Λ ∩ (∂Ω+B(0, r)).

Theorem
Let g ∈M∗

Λ(Rd) and Λ be such that (g,Λ) induces a frame with frame constants
A,B > 0, r > 0 and Ω ⊂ R2d be compact. Then there exists a constant C
depending only on r and d such that

∥ρΩ − χΩ∥ℓ1(Λ) ≤ Cg#∂
rΛ
Λ Ω+ 2

B −A
B

#(Ω ∩ Λ) +
B

∥g∥2L2

where rΛ = r + lM and lM is the diameter of the fundamental domain of Λ.

▶ A = B =⇒ ∥ρΩ − χΩ∥ℓ1(Λ) ≤ Cg#∂rΛ
Λ + D

▶ Estimate is tight:

C1#∂
rΛ
Λ B(0, R) ≤ ∥ρB(0,R) − χB(0,R)∥ℓ1(Λ) ≤ C2#∂

rΛ
Λ B(0, R)
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Paper G: Empirical plunge profiles of time-frequency
localization operators
Preprint

For localization operators Ag
Ω:

▶ First ∼ |Ω| eigenvalues ≈ 1

▶ Then ≲ |∂Ω| eigenvalues not 1 nor 0 (plunge region)
▶ Remaining eigenvalues ≈ 0

Lots of related results but no progress since late 1980s.
Goal: Describe eigenvalue behavior in more detail
Approach:
▶ Only eigenvalues for Ω = B(0, R) known
▶ Extend this result to more Ω

▶ Conjecture universality
▶ Test numerically
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Rotationally-invariant symbol + conjecture

Theorem
Let Ω ⊂ R2 be a compact, regular closed and rotationally invariant set
with a finite number of connected components, and let λRΩ

k the k-th
eigenvalue of Ag0Ω . Then∣∣∣∣λRΩ

k − 1

2
erfc

(√
2π
k − |RΩ|
|∂RΩ|

)∣∣∣∣ = O

(
1

R

)
.

Conjecture
Let Ω ⊂ R2 be compact and regular closed, and let λΩk be the k-th
eigenvalue of Ag0Ω . Then∣∣∣∣λRΩ

k − 1

2
erfc

(√
2π
k − |RΩ|
|∂RΩ|

)∣∣∣∣ = O

(
1

R

)
.
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Numerics

Figure: Symbol, eigenvalues and discrepancy to erfc
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Thank you!
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