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Uncertainty principle

Meta-theorem:
A function f and its Fourier transform f̂ cannot both be well-localized.

Theorem (Paley-Wiener)
Let f ∈ L2(R). If both f and f̂ have compact support, then f = 0.

Remark:
We will use the normalization

f̂(ω) =

∫
R
f(x)e−2πiωx dx.
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Theorem (Heisenberg, Kennard, Weyl, Robertson)
Let f ∈ L2(R), then(∫

R
(x− a)2|f(x)|2 dx

)(∫
R
(ω − b)2|f̂(ω)|2 dω

)
≥ ∥f∥42

16π2
.

Theorem (Donoho-Stark)
Let f ∈ L2(R) with ∥f∥L2 = 1, then

∥f∥L2(R\E) < εE , ∥f̂∥L2(R\F ) < εF =⇒ |E| · |F | ≥
(
1− (εE + εF )

)2
.

Theorem (Hirschman–Beckner)
Let f ∈ L2(R) and define H(f) = −

∫
R |f(x)|2 log |f(x)|2 dx, then

H(f) +H(f̂) ≥ log
e

2
.
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Full statement

Theorem (Hardy ’33)
Let f ∈ L2(R) satisfy |f(x)| ≤ C1e

−πax2 and |f̂(ω)| ≤ C2e
−πbω2 . Then

▶ ab > 1 =⇒ f(x) = 0,

▶ ab = 1 =⇒ f(x) = Ce−aπx2
.

To help keep track of things, we will remember facts in blue boxes and
use them via green boxes .

We’ll start with ab = 1
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Proof (1/12): Simplifications

Theorem (Hardy ’33)
Let f ∈ L2(R) satisfy |f(x)| ≤ C1e

−πax2 and |f̂(ω)| ≤ C2e
−πbω2 . Then

▶ ab > 1 =⇒ f(x) = 0,

▶ ab = 1 =⇒ f(x) = Ce−aπx2
.

▶ Replace f 7→ f/max{C1, C2} =⇒ C1, C2 ≤ 1WLOG.
▶ Assume true for a = 1. For f as in theorem, consider

g(x) = f(x/
√
a) =⇒ ĝ(ω) =

√
af̂(

√
aω)

=⇒ |g(x)| ≤ e−πx2
, |ĝ(ω)| ≤

√
ae−πabω2

.

Applying theorem to g, we get that g(x) = Ce−πx2 if ab = 1 and in
particular f(x) = Ce−πax2 . WLOG a = 1 from now on.

|f(x)| ≤ e−πx2 |f̂(ω)| ≤ e−πω2
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Proof (2/12): Analytic extension of f̂
Define

F (z) =

∫
R
f(u)e−2πizu du |f̂(ω)| ≤ e−πω2 |F (x)| ≤ e−πx2

Claim: F is entire.
Proof: For any fixed u ∈ R, f(u)e−2πizu is analytic in z. In general,

|ez| = |eRe(z)+i Im(z)| = |eRe(z)| · |ei Im(z)| = eRe(z) |ez| = eRe(z)

In particular, using |f(x)| ≤ e−πx2 ,

|f(u)| · |e−2πizu| ≤ e−πu2
e2πu Im(z)

which is integrable in u. So for each fixed z, the integrand in F (z) is
integrable and entire and consequently F is entire .
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Proof (3/12): Bounding |F |
We will need to bound |F (z)|. Using |f(x)| ≤ e−πx2

|F (x+ iy)| ≤
∫
R
|f(u)||e−2πi(x+iy)u| du ≤

∫
R
e−πu2+2πyu du.

Completing the square,

−πu2 + 2πyu = −π(u2 − 2yu+ y2) + πy2 = −π(u− y)2 + πy2,

meaning that

|F (x+ iy)| ≤
∫
R
e−πu2+2πyu du = eπy

2

∫
R
e−π(u−y)2 du︸ ︷︷ ︸

=1

|F (x+ iy)| ≤ eπy
2 |F (iy)| ≤ eπy

2
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Proof (4/12): Defining and bounding G along axes

Forming the function G(z) = eπz
2
F (z), |F (x)| ≤ e−πx2 and

|F (iy)| ≤ eπy
2 yields

|G(x)| ≤ eπx
2
e−πx2

= 1 |G(x)| ≤ 1

|G(iy)| ≤ eπ(iy)
2
eπy

2
= 1 |G(iy)| ≤ 1

Since F is entire , it follows that G is entire .
We want to show that G is bounded so that Liouville allows us to
conclude that

G ≡ C =⇒ F (z) = Ce−πz2 =⇒ f̂(ω) = Ce−πω2
=⇒ f(x) = Ce−πx2

.
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Proof (5/12): Phragmén–Lindelöf setup

Theorem (Phragmén–Lindelöf principle)
Let S = {z ∈ C : α < arg z < β} be a sector of C and F a function which is
analytic in S that is continuous on S. If |F (z)| ≤ M on ∂S and

|F (z)| ≤ Cec|z|
ρ

for some c, C > 0 and ρ < π
β−α , then |F (z)| ≤ M on S.

Using |F (x+ iy)| ≤ eπy
2 and |ez| = eRe(z) ,

|G(z)| = |G(x+ iy)| = |eπ(x+iy)2 ||F (x+ iy)| |G(x+ iy)| ≤ eπx
2

≤ |eπ(x2+2ixy−y2)|eπy2 = eπx
2 ≤ eπ|z|

2 |G(z)| ≤ eπ|z|
2

so we have ρ = 2 growth.
With α = 0, β = π/2, we need ρ < π

π/2−0 = 2 to apply Phragmén–Lindelöf.
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Proof (6/12): Defining Hδ

For small δ > 0, consider

Sθ = {z ∈ S : 0 < arg z < θ}

where θ = θ(δ) is dependent on δ.
Define Hδ(z) = eiδz

2
G(z) , then |G(x)| ≤ 1 gives

|Hδ(x)| = |eiδx2 | · |G(x)| ≤ 1 |Hδ(x)| ≤ 1

Along the θ ray parametrized by z = reiθ, using |G(x+ iy)| ≤ eπx
2 and

|ez| = eRe(z) , we can bound{
|G(z)| ≤ eπr

2 cos(θ)2 ,

|eiδz2 | = e−δr2 sin(2θ)
|Hδ(re

iθ)| ≤ exp(r2 cos θ(π cos θ − 2δ sin θ)).
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Proof (7/12): Bounding Hδ along ray

Recall

|Hδ(re
iθ)| ≤ exp(r2 cos θ(π cos θ − 2δ sin θ)).

For θ ≤ π/2, cos θ ≥ 0 so negative exponent requires

π cos θ − 2δ sin θ < 0

⇐⇒ π cos θ < 2δ sin θ

⇐⇒ π

2δ
< tan θ

we can set e.g. θ(δ) = arctan
(
π
δ

)
to guarantee this. As a consequence,

|Hδ(re
iθ)| ≤ 1
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Proof (8/12): Apply Phragmén–Lindelöf to Hδ

▶ Combining |Hδ(x)| ≤ 1 and |Hδ(re
iθ)| ≤ 1 , we get that |Hδ(z)| ≤ 1

for z ∈ ∂Sθ(δ).

▶ For all z ∈ C, using |G(z)| ≤ eπ|z|
2 , we have the growth bound

|Hδ(z)| ≤ |eiδz2 ||G(z)| ≤ eδ|z|
2
eπ|z|

2 ≤ e2π|z|
2

i.e. ρ = 2 < π
θ(δ)−0 .

▶ Applying Phragmén–Lindelöf yields that |Hδ(z)| ≤ 1 for z ∈ Sθ(δ)

for all small δ > 0.
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Proof (9/12): Extend bound to G on first quadrant

Now fix z0 ∈ Sπ/2. Since θ(δ) → π/2 as δ → 0, there exists δ0 > 0 such
that z0 ∈ Sθ(δ) for all δ < δ0.
For any ε > 0 we can find δ < δ0 so small that |e−iδz20 − 1| < ε . Then

|Hδ(z0)| = |eiδz20 ||G(z0)| ≤ 1 Hδ(z) = eiδz
2
G(z) |Hδ(z)| ≤ 1

=⇒ |G(z0)| ≤ |e−iδz20 | < 1 + ε |e−iδz20 − 1| < ε

Since ε and z0 were arbitrary, we conclude that |G(z)| ≤ 1 for all z ∈ Sπ/2.

The same bound holds on Sπ/2 since |G(x)| ≤ 1 and |G(iy)| ≤ 1
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Proof (10/12): Modifications for second quadrant
Second quadrant:
▶ Define Hδ(z) = e−iδz2G(z) and θ(δ) = π − arctan

(
π
δ

)
→ π/2 as δ → 0,

▶ Still |Hδ(x)| ≤ 1 and |Hδ(z)| ≤ e2π|z|
2 ,

▶ Consider sector Sθ(δ) = {z ∈ C : θ(δ) < arg z < π},
▶ Along ray z = reiθ, |Hδ(re

iθ)| ≤ exp
(
r2 cos θ(π cos θ + 2δ sin θ)

)
,

▶ By our choice of θ(δ), it follows that |Hδ(re
iθ)| ≤ 1,

▶ P-L =⇒ Hδ(z) ≤ 1 for z ∈ Sθ(δ) for small enough δ,
▶ Can extend to |G(z)| ≤ 1 inside entire quadrant by similar

argument.

Repeat with similar modifications for the third and fourth quadrants.

|G(z)| ≤ 1 ∀z
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Proof (11/12): Applying Liouville’s theorem

Having shown that |G(z)| ≤ 1 ∀z and that G is entire . Liouville’s
theorem allows us to conclude that G is constant. Now

G(z) = C =⇒ F (z) = Ce−πz2 =⇒ f̂(ω) = Ce−πω2
=⇒ f(x) = Ce−πx2

.
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Proof (12/12): The ab > 1 case

Suppose |f(x)| ≤ e−πax2 and |f̂(ω)| ≤ e−πbω2 for ab > 1 and define

a0 =
1

b
<

ab

b
= a =⇒ |f(x)| ≤ e−πa0x2

.

Applying the theorem with a0b = 1 yields

f(x) = Ce−πa0x2
.

Combining with the original estimate |f(x)| ≤ e−πax2 and a0 < a yields

|f(x)| = Ce−πa0x2 ≤ e−πax2
=⇒ C ≤ e−πx2(a−a0) =⇒ C = 0.
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Weaker decay / variable exponent

Theorem (Hardy ’33)
Let f ∈ L2(R) satisfy |f(x)| ≤ C1(1 + |x|)Ne−πax2 and
|f̂(ω)| ≤ C2(1 + |ω|)Ne−πbω2 . Then
▶ ab > 1 =⇒ f(x) = 0,

▶ ab = 1 =⇒ f(x) = P (x)e−ax2 ,
where P is a polynomial with deg(P ) ≤ N .

Theorem (Cowling, Price ’82)
Suppose f ∈ S ′(R) and∥∥eaπx2

f
∥∥
Lp +

∥∥ebπω2
f̂
∥∥
Lq < ∞

for 1 ≤ p, q ≤ ∞ where one of p, q is < ∞. Then if ab ≥ 1, f = 0.
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Higher dimensional version

Obvious generalization to higher dimension also holds.

Theorem (Sitaram, Sundari, Thangavelu ’94)
Let f ∈ L2(Rd) satisfy |f(x)| ≤ C1e

−πa|x|2 and |f̂(ω)| ≤ C2e
−πb|ω|2 . Then

▶ ab > 1 =⇒ f(x) = 0,

▶ ab = 1 =⇒ f(x) = Ce−a|x|2 .
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Schrödinger connection
The free Schrödinger equation

∂tu = i∆u,

u(x, 0) = u0(x)

has the general solution

u(x, t) =

∫
Rn

ei|x−y|2/4t

(4πit)n/2
u0(y) dy =

ei|x|
2/4t

(4πit)n/2

∫
Rn

e−2ix·y/4tei|y|
2/4tu0(y) dy.

Let f(y) = ei|y|
2/4tu0(y), then (up to factors depending on t),

|f(x)| = |u0(x)|, |f̂(x)| = |u(x, t)|.

Here we can apply Hardy!
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Dynamical Hardy

Theorem (Escauriaza–Kenig–Ponce–Vega)
Let u be a solution to the free Schrödinger equation

∂tu = i∆u.

Suppose that u is sufficiently smooth and satisfies

|u(x, 0)| ≤ C1 e
−πax2

, |u(x, T )| ≤ C2 e
−πbx2

.

for some a, b > 0. Then
▶ ab >

1

(4πT )2
=⇒ u = 0,

▶ ab =
1

(4πT )2
=⇒ u(x, t) = Ce−

πa+i
4T |x|2 .

Subsequent work looked at other PDE’s and added potentials.



21 / 23

Metaplectic version I

The Fourier transform can be realized as a special case of a
metaplectic operator. They can be realized as compositions of
▶ Standard Fourier transform f 7→ f̂

▶ Chirp multiplication f(t) 7→ eiπQt·tf(t), Q symmetric
▶ Rescalings f(t) 7→ |det(E)|1/2f(Et), E invertible

Includes fractional Fourier transform, chirps and Schrödinger
propagators.

Metaplectic operator Ŝ ↔ Symplectic matrix S

S =

(
A B
C D

)
∈ R2d×2d, A,B,C,D ∈ Rd×d.
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Metaplectic version II

Theorem (Cordero, Giacchi, Malinnikova ’24)
Let f ∈ L2(Rd) and Ŝ be a metaplectic operator such that the associated
block matrix B is nonzero, then ifM and N are positive-semidefinite
matrices with

ker(M) = ker(B), R(N) = R(B),

f satisfies

|f(x)| ≤ C1e
−πMx·x, |Ŝf(ξ)| ≤ C2e

−πNξ·ξ

and the matrixMBTNB has an eigenvalue λ > 1, then f = 0.

Enables anisotropic Hardy with regular Fourier transform!
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Thank you!


