

Hardy's uncertainty principle - From a historical overview to new developments

Trial Lecture

Simon Halvdansson June 11, 2025

Supervisor: Franz Luef Co-supervisor: Sigrid Grepstad Opponents: Elena Cordero and Bruno Torresani

Uncertainty principle

Meta-theorem:

A function f and its Fourier transform \hat{f} cannot both be well-localized.

Theorem (Paley-Wiener)

Let $f \in L^2(\mathbb{R})$. If both f and \hat{f} have compact support, then f = 0.

Remark: We will use the normalization

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(x) e^{-2\pi i \omega x} \, dx.$$

Theorem (Heisenberg, Kennard, Weyl, Robertson) Let $f \in L^2(\mathbb{R})$, then

$$\left(\int_{\mathbb{R}} (x-a)^2 |f(x)|^2 \, dx\right) \left(\int_{\mathbb{R}} (\omega-b)^2 |\hat{f}(\omega)|^2 \, d\omega\right) \ge \frac{\|f\|_2^4}{16\pi^2}.$$

Theorem (Donoho-Stark)

Let $f \in L^2(\mathbb{R})$ with $\|f\|_{L^2} = 1$, then

$$\|f\|_{L^2(\mathbb{R}\setminus E)} < \varepsilon_E, \quad \|\hat{f}\|_{L^2(\mathbb{R}\setminus F)} < \varepsilon_F \implies |E| \cdot |F| \ge \left(1 - (\varepsilon_E + \varepsilon_F)\right)^2.$$

Theorem (Hirschman-Beckner)

Let $f \in L^2(\mathbb{R})$ and define $H(f) = -\int_{\mathbb{R}} |f(x)|^2 \log |f(x)|^2 \, dx$, then

$$H(f) + H(\hat{f}) \ge \log \frac{e}{2}$$

Full statement

Theorem (Hardy '33) Let $f \in L^2(\mathbb{R})$ satisfy $|f(x)| \le C_1 e^{-\pi a x^2}$ and $|\hat{f}(\omega)| \le C_2 e^{-\pi b \omega^2}$. Then $\flat ab > 1 \implies f(x) = 0$, $\flat ab = 1 \implies f(x) = C e^{-a\pi x^2}$.

To help keep track of things, we will remember facts in <u>blue boxes</u> and use them via green boxes.

We'll start with ab=1

Proof (1/12): Simplifications

Theorem (Hardy '33)

Let
$$f \in L^2(\mathbb{R})$$
 satisfy $|f(x)| \le C_1 e^{-\pi a x^2}$ and $|\hat{f}(\omega)| \le C_2 e^{-\pi b \omega^2}$. Then
 $ab > 1 \implies f(x) = 0$,
 $ab = 1 \implies f(x) = C e^{-a\pi x^2}$.

- ▶ Replace $f \mapsto f / \max\{C_1, C_2\} \implies C_1, C_2 \le 1$ WLOG.
- Assume true for a = 1. For f as in theorem, consider

$$g(x) = f(x/\sqrt{a}) \implies \hat{g}(\omega) = \sqrt{a}\hat{f}(\sqrt{a}\omega)$$
$$\implies |g(x)| \le e^{-\pi x^2}, \quad |\hat{g}(\omega)| \le \sqrt{a}e^{-\pi ab\omega^2}.$$

Applying theorem to g, we get that $g(x) = Ce^{-\pi x^2}$ if ab = 1 and in particular $f(x) = Ce^{-\pi ax^2}$. WLOG a = 1 from now on.

$$|f(x)| \le e^{-\pi x^2} \quad |\hat{f}(\omega)| \le e^{-\pi \omega^2}$$

Proof (2/12): Analytic extension of \hat{f}

Define

$$F(z) = \int_{\mathbb{R}} f(u)e^{-2\pi i z u} du \qquad \boxed{|\hat{f}(\omega)| \le e^{-\pi\omega^2}} \qquad \boxed{|F(x)| \le e^{-\pi x^2}}$$

Claim: F is entire. **Proof:** For any fixed $u \in \mathbb{R}$, $f(u)e^{-2\pi i z u}$ is analytic in z. In general,

$$|e^{z}| = |e^{\operatorname{Re}(z) + i\operatorname{Im}(z)}| = |e^{\operatorname{Re}(z)}| \cdot |e^{i\operatorname{Im}(z)}| = e^{\operatorname{Re}(z)}$$
 $|e^{z}| = e^{\operatorname{Re}(z)}$

In particular, using $|f(x)| \le e^{-\pi x^2}$,

$$|f(u)| \cdot |e^{-2\pi i z u}| \le e^{-\pi u^2} e^{2\pi u \operatorname{Im}(z)}$$

which is integrable in u. So for each fixed z, the integrand in F(z) is integrable and entire and consequently F is entire.

Proof (3/12): Bounding |F|

We will need to bound |F(z)|. Using $|f(x)| \le e^{-\pi x^2}$

$$|F(x+iy)| \le \int_{\mathbb{R}} |f(u)| |e^{-2\pi i (x+iy)u}| \, du \le \int_{\mathbb{R}} e^{-\pi u^2 + 2\pi yu} \, du.$$

Completing the square,

$$-\pi u^{2} + 2\pi yu = -\pi (u^{2} - 2yu + y^{2}) + \pi y^{2} = -\pi (u - y)^{2} + \pi y^{2},$$

meaning that

$$|F(x+iy)| \le \int_{\mathbb{R}} e^{-\pi u^2 + 2\pi y u} \, du = e^{\pi y^2} \underbrace{\int_{\mathbb{R}} e^{-\pi (u-y)^2} \, du}_{=1}$$
$$\underbrace{|F(x+iy)| \le e^{\pi y^2}}_{|F(iy)| \le e^{\pi y^2}}$$

Proof (4/12): Defining and bounding *G* **along axes**

Forming the function
$$G(z) = e^{\pi z^2} F(z)$$
, $|F(x)| \le e^{-\pi x^2}$ and $|F(iy)| \le e^{\pi y^2}$ yields

$$|G(x)| \le e^{\pi x^2} e^{-\pi x^2} = 1 \qquad |G(x)| \le 1$$

$$|G(iy)| \le e^{\pi (iy)^2} e^{\pi y^2} = 1 \qquad |G(iy)| \le 1$$

Since F is entire, it follows that G is entire.

We want to show that ${\cal G}$ is bounded so that Liouville allows us to conclude that

$$G \equiv C \implies F(z) = C e^{-\pi z^2} \implies \widehat{f}(\omega) = C e^{-\pi \omega^2} \implies f(x) = C e^{-\pi x^2}$$

Proof (5/12): Phragmén–Lindelöf setup

Theorem (Phragmén-Lindelöf principle)

Let $S = \{z \in \mathbb{C} : \alpha < \arg z < \beta\}$ be a sector of \mathbb{C} and F a function which is analytic in S that is continuous on \overline{S} . If $|F(z)| \leq M$ on ∂S and

 $|F(z)| \le C e^{c|z|^{\rho}}$

for some c, C > 0 and $\rho < \frac{\pi}{\beta - \alpha}$, then $|F(z)| \le M$ on \overline{S} .

Using
$$|F(x+iy)| \le e^{\pi y^2}$$
 and $|e^z| = e^{\operatorname{Re}(z)}$,

$$\begin{aligned} |G(z)| &= |G(x+iy)| = |e^{\pi(x+iy)^2}||F(x+iy)| \\ &\le |e^{\pi(x^2+2ixy-y^2)}|e^{\pi y^2} = e^{\pi x^2} \le e^{\pi|z|^2} \end{aligned} \qquad \boxed{|G(z)| \le e^{\pi|z|^2}} \end{aligned}$$

so we have $\rho = 2$ growth. With $\alpha = 0, \beta = \pi/2$, we need $\rho < \frac{\pi}{\pi/2 - 0} = 2$ to apply Phragmén–Lindelöf.

9/23

Proof (6/12): Defining H_{δ}

For small $\delta > 0$, consider

$$S_{\theta} = \{ z \in S : 0 < \arg z < \theta \}$$

where $\theta = \theta(\delta)$ is dependent on δ . Define $H_{\delta}(z) = e^{i\delta z^2}G(z)$, then $|G(x)| \le 1$ gives

$$|H_{\delta}(x)| = |e^{i\delta x^2}| \cdot |G(x)| \le 1 \qquad |H_{\delta}(x)| \le 1$$

Along the θ ray parametrized by $z = re^{i\theta}$, using $|G(x + iy)| \le e^{\pi x^2}$ and $|e^z| = e^{\operatorname{Re}(z)}$, we can bound

$$\begin{cases} |G(z)| \le e^{\pi r^2 \cos(\theta)^2}, \\ |e^{i\delta z^2}| = e^{-\delta r^2 \sin(2\theta)} \end{cases} |H_{\delta}(re^{i\theta})| \le \exp(r^2 \cos\theta(\pi\cos\theta - 2\delta\sin\theta)). \end{cases}$$

Proof (7/12): Bounding H_{δ} along ray

Recall

$$|H_{\delta}(re^{i\theta})| \le \exp(r^2 \cos \theta (\pi \cos \theta - 2\delta \sin \theta)).$$

For $\theta \leq \pi/2$, $\cos \theta \geq 0$ so negative exponent requires

 $\pi \cos \theta - 2\delta \sin \theta < 0$ $\iff \pi \cos \theta < 2\delta \sin \theta$ $\iff \frac{\pi}{2\delta} < \tan \theta$

we can set e.g. $\theta(\delta) = \arctan\left(\frac{\pi}{\delta}\right)$ to guarantee this. As a consequence,

$$|H_{\delta}(re^{i\theta})| \le 1$$

D NTNU

Proof (8/12): Apply Phragmén–Lindelöf to H_{δ}

- Combining $|H_{\delta}(x)| \leq 1$ and $|H_{\delta}(re^{i\theta})| \leq 1$, we get that $|H_{\delta}(z)| \leq 1$ for $z \in \partial S_{\theta(\delta)}$.
- For all $z \in \mathbb{C}$, using $|G(z)| \le e^{\pi |z|^2}$, we have the growth bound

$$|H_{\delta}(z)| \le |e^{i\delta z^2}||G(z)| \le e^{\delta|z|^2}e^{\pi|z|^2} \le e^{2\pi|z|^2}$$

i.e. $\rho = 2 < \frac{\pi}{\theta(\delta) - 0}$.

Applying Phragmén–Lindelöf yields that $|H_{\delta}(z)| \leq 1$ for $z \in S_{\theta(\delta)}$ for all small $\delta > 0$.

Proof (9/12): Extend bound to *G* **on first quadrant**

Now fix $z_0 \in S_{\pi/2}$. Since $\theta(\delta) \to \pi/2$ as $\delta \to 0$, there exists $\delta_0 > 0$ such that $z_0 \in S_{\theta(\delta)}$ for all $\delta < \delta_0$.

For any $\varepsilon > 0$ we can find $\delta < \delta_0$ so small that $|e^{-i\delta z_0^2} - 1| < \varepsilon$. Then

$$|H_{\delta}(z_0)| = |e^{i\delta z_0^2}||G(z_0)| \le 1 \qquad H_{\delta}(z) = e^{i\delta z^2}G(z) \quad |H_{\delta}(z)| \le 1$$
$$\implies |G(z_0)| \le |e^{-i\delta z_0^2}| < 1 + \varepsilon \qquad |e^{-i\delta z_0^2} - 1| < \varepsilon$$

Since ε and z_0 were arbitrary, we conclude that $|G(z)| \le 1$ for all $z \in S_{\pi/2}$. The same bound holds on $\overline{S_{\pi/2}}$ since $|G(x)| \le 1$ and $|G(iy)| \le 1$

Proof (10/12): Modifications for second quadrant

Second quadrant:

- Define $H_{\delta}(z) = e^{-i\delta z^2}G(z)$ and $\theta(\delta) = \pi \arctan\left(\frac{\pi}{\delta}\right) \to \pi/2$ as $\delta \to 0$,
- Still $|H_{\delta}(x)| \leq 1$ and $|H_{\delta}(z)| \leq e^{2\pi|z|^2}$,
- ► Consider sector $S_{\theta(\delta)} = \{z \in \mathbb{C} : \theta(\delta) < \arg z < \pi\}$,
- Along ray $z = re^{i\theta}$, $|H_{\delta}(re^{i\theta})| \le \exp\left(r^2 \cos\theta(\pi \cos\theta + 2\delta \sin\theta)\right)$,
- ▶ By our choice of $\theta(\delta)$, it follows that $|H_{\delta}(re^{i\theta})| \leq 1$,
- ▶ P-L \implies $H_{\delta}(z) \leq 1$ for $z \in S_{\theta(\delta)}$ for small enough δ ,
- ► Can extend to $|G(z)| \le 1$ inside entire quadrant by similar argument.

Repeat with similar modifications for the third and fourth quadrants.

$$|G(z)| \le 1 \,\forall z$$

Proof (11/12): Applying Liouville's theorem

Having shown that $|G(z)| \le 1 \forall z$ and that G is entire. Liouville's theorem allows us to conclude that G is constant. Now

$$G(z) = C \implies F(z) = Ce^{-\pi z^2} \implies \hat{f}(\omega) = Ce^{-\pi \omega^2} \implies f(x) = Ce^{-\pi x^2}$$

Proof (12/12): The ab > 1 **case**

Suppose $|f(x)| \le e^{-\pi a x^2}$ and $|\hat{f}(\omega)| \le e^{-\pi b \omega^2}$ for ab > 1 and define

$$a_0 = \frac{1}{b} < \frac{ab}{b} = a \implies |f(x)| \le e^{-\pi a_0 x^2}.$$

Applying the theorem with $a_0b = 1$ yields

$$f(x) = Ce^{-\pi a_0 x^2}$$

Combining with the original estimate $|f(x)| \le e^{-\pi ax^2}$ and $a_0 < a$ yields

$$|f(x)| = Ce^{-\pi a_0 x^2} \le e^{-\pi a x^2} \implies C \le e^{-\pi x^2 (a-a_0)} \implies C = 0.$$

Weaker decay / variable exponent

Theorem (Hardy '33)

Let
$$f \in L^{2}(\mathbb{R})$$
 satisfy $|f(x)| \leq C_{1}(1+|x|)^{N}e^{-\pi ax^{2}}$ and
 $|\hat{f}(\omega)| \leq C_{2}(1+|\omega|)^{N}e^{-\pi b\omega^{2}}$. Then
 $\blacktriangleright ab > 1 \implies f(x) = 0$,
 $\blacktriangleright ab = 1 \implies f(x) = P(x)e^{-ax^{2}}$,
where P is a polynomial with deg(P) < N

Theorem (Cowling, Price '82)

Suppose $f \in \mathcal{S}'(\mathbb{R})$ and

$$\big\|e^{a\pi x^2}f\big\|_{L^p}+\big\|e^{b\pi\omega^2}\hat{f}\big\|_{L^q}<\infty$$

for $1 \le p,q \le \infty$ where one of p,q is $< \infty$. Then if $ab \ge 1$, f = 0.

Higher dimensional version

Obvious generalization to higher dimension also holds.

Theorem (Sitaram, Sundari, Thangavelu '94) Let $f \in L^2(\mathbb{R}^d)$ satisfy $|f(x)| \leq C_1 e^{-\pi a |x|^2}$ and $|\hat{f}(\omega)| \leq C_2 e^{-\pi b |\omega|^2}$. Then $\blacktriangleright ab > 1 \implies f(x) = 0$, $\blacktriangleright ab = 1 \implies f(x) = C e^{-a |x|^2}$.

D NTNU

Schrödinger connection

The free Schrödinger equation

 $\partial_t u = i\Delta u,$ $u(x,0) = u_0(x)$

has the general solution

$$u(x,t) = \int_{\mathbb{R}^n} \frac{e^{i|x-y|^2/4t}}{(4\pi i t)^{n/2}} u_0(y) \, dy = \frac{e^{i|x|^2/4t}}{(4\pi i t)^{n/2}} \int_{\mathbb{R}^n} e^{-2ix \cdot y/4t} e^{i|y|^2/4t} u_0(y) \, dy.$$

Let $f(y) = e^{i|y|^2/4t}u_0(y)$, then (up to factors depending on *t*),

$$|f(x)| = |u_0(x)|, \qquad |\hat{f}(x)| = |u(x,t)|.$$

Here we can apply Hardy!

Dynamical Hardy

Theorem (Escauriaza-Kenig-Ponce-Vega)

Let \boldsymbol{u} be a solution to the free Schrödinger equation

 $\partial_t u = i\Delta u.$

Suppose that u is sufficiently smooth and satisfies

$$|u(x,0)| \le C_1 e^{-\pi a x^2}, \qquad |u(x,T)| \le C_2 e^{-\pi b x^2}.$$

for some
$$a, b > 0$$
. Then
 $\bullet ab > \frac{1}{(4\pi T)^2} \implies u = 0,$
 $\bullet ab = \frac{1}{(4\pi T)^2} \implies u(x,t) = Ce^{-\frac{\pi a+i}{4T}|x|^2}.$

Subsequent work looked at other PDE's and added potentials.

Metaplectic version I

The Fourier transform can be realized as a special case of a **metaplectic** operator. They can be realized as compositions of

- Standard Fourier transform $f \mapsto \hat{f}$
- Chirp multiplication $f(t) \mapsto e^{i\pi Qt \cdot t} f(t)$, Q symmetric
- ▶ Rescalings $f(t) \mapsto |\det(E)|^{1/2} f(Et)$, *E* invertible

Includes fractional Fourier transform, chirps and Schrödinger propagators.

Metaplectic operator $\hat{S} \leftrightarrow$ Symplectic matrix S

$$S = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{R}^{2d \times 2d}, \qquad A, B, C, D \in \mathbb{R}^{d \times d}.$$

Metaplectic version II

Theorem (Cordero, Giacchi, Malinnikova '24)

Let $f \in L^2(\mathbb{R}^d)$ and \hat{S} be a metaplectic operator such that the associated block matrix B is nonzero, then if M and N are positive-semidefinite matrices with

$$\ker(M) = \ker(B), \qquad R(N) = R(B),$$

f satisfies

$$|f(x)| \le C_1 e^{-\pi M x \cdot x}, \qquad |\hat{S}f(\xi)| \le C_2 e^{-\pi N \xi \cdot \xi}$$

and the matrix MB^TNB has an eigenvalue $\lambda > 1$, then f = 0.

Enables anisotropic Hardy with regular Fourier transform!

Thank you!