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B Uncertainty principle

NI Meta-theorem:

A function f and its Fourier transform f cannot both be well-localized.

Theorem (Paley-Wiener)
Let f € L2(R). If both f and f have compact support, then f = 0.

Remark:
We will use the normalization

fw) = [ s da,




Theorem (Heisenberg, Kennard, Weyl, Robertson)
Let f € L*(R), then

(/R(x—a)Qlf(x)Pda:) (A(w—b)2|f(w)|2dw) > %‘

Theorem (Donoho-Stark)
Let f € L*(R) with || f||z2 = 1, then

7 2
Ifle2me) <eer Nflzme) <er = |E|-|IF| > (1 - (e +eF))”

Theorem (Hirschman-Beckner)
Let f € L*(R) and define H(f) = — [, | f()[*log | f(x)|* dz, then

H(f)+ H(f) > logg.




B Full statement

NTNU

Theorem (Hardy '33)
Let f € L2(R) satisfy | f(z)| < C1e=™=" and | f(w)| < Cae~™*, Then
> ab>1 = f(x)=0,
> ab=1 — f(z) = Ce ™"

To help keep track of things, we will remember facts in and

use them via  green boxes .

We'll start withab =1



Proof (1/12): Simplifications

Theorem (Hardy '33)
Let f € L2(R) satisfy | f(z)| < Cre=™=" and | f(w)| < Cye~ ™", Then
> ab>1 = f(x)=0,
> ab=1 = f(z) = Ce 9",

» Replace f — f/max{Cy,C2} = C1,Cy < 1WLOG.
» Assume true for a = 1. For f as in theorem, consider
g9(x) = f(z/va) = j(w) = Vaf(Vaw)
= g(@)] <™, [g(w)] < Vae ™,
Applying theorem to g, we get that g(z) = Ce~™" ifab = 1 and in
particular f(z) = Ce ™, WLOG a = 1 from now on.

@)l < o] [l w)] < ]




Proof (2/12): Analytic extension off

Define

- [ (o)< [FolLe

Claim: F is entire.
Proof: For any fixed u € R, f(u)e™2™*" is analytic in z. In general,

7] = [eReEIHImE] — |Rele)] . i m()| — eRe) - []e%] = eRe(2)

In particular, using“f(g;)| < e ]

|f(u)| . ‘6—27”'2’“| < e—rru2627ru Im(z)

which is integrable in u. So for each fixed z, the integrand in F(z) is
integrable and entire and consequently (F is entire].




Proof (3/12): Bounding |F|
We will need to bound |F(z)|. Using | f(x)| < e~

2

\F(a: —|—iy)| < / |f(u)He—27ri(x+iy)u| du < / e—wu2+2ﬂ'yu du.
R R

Completing the square,

2 2

—mu? 4 2myu = —w(u? — 2yu + y?) + 1y = —w(u — y)* + 1,

meaning that

P+ < [

2 2 2
e~ U +2myu du = ™Y / e m(u—y) du
R

R

N————
=1

|F(z +iy)| < e | ||F(iy)| < e’ |




Proof (4/12): Defining and bounding G along axes

Forming the function G(z) = €™ F(z), [[F(m)| < e‘”ﬂand
|F(iy)| < e™" yields

|G(z)| <e™e ™ =1 |G(z)| <1
|G(iy)| < ™ em” =1 G(iy) < 1

Since [ F is entire}, it follows that (G is entire).

We want to show that G is bounded so that Liouville allows us to
conclude that

2 ~ 2 2

G=C = F(2)=Ce ™ = f(w)=Ce™ = f(x)=Ce ™.




B Proof (5/12): Phragmén-Lindelof setup

NTNU

Theorem (Phragmén-Lindel6f principle)
Llet S={ze€ C:a<argz < [} beasector of C and F a function which is
analytic in S that is continuous on S. If |F(z)| < M on dS and

|[F(2)| < Ce?l”

for some ¢,C > 0and p < 5%, then |F(z)| < M on S,

Using | |F(x + iy)| < e™ | and [[e*] = <),

G(2)] = |Gz + iy)| = [T+ |F(z +iy)|  [|G(a + iy)| < e™’ ]

< ‘ew(ar2+2ia:y—y2)‘€ﬂ'y2 _ e7rac2 < eﬂ'\z|2 |G(Z)‘ < e7r|z|2

so we have p = 2 growth.
With o = 0,8 = 7/2, we need p < =725 = 2to apply Phragmén-Lindelof.




Proof (6/12): Defining H;

For small § > 0, consider
Sp={z€85:0<argz <6}

where 6§ = 6(0) is dependent on 6.
Define | Hs(2) = ¢ G(2) | then [|G(x)| < 1] gives

|Hy(z)| =[] |G(x)| <1 ([Hs(@) <1

Along the 0 ray parametrized by z = re', using [|G(x +iy)| < emﬂ and

le?| = ef*() | we can bound

822 _ b2 sin20) |Hs(re?)| < exp(r? cos O(m cos — 20 sinh)).

{ |G(Z) | < ewr2 cos(9)? ,




B Proof (7/12): Bounding H; along ray

NTNU Recall
|Hs(re®)| < exp(r? cos O(m cos 6 — 20 sinh)).
For 6 < m/2, cosf > 0 so negative exponent requires

mcosf —20sinf < 0
<= mcosh < 26sinf

= = < tanf

b 11

26

we can set e.g. 6(§) = arctan (%) to guarantee this. As a consequence,

|H5(rew)| <1



B Proof (8/12): Apply Phragmén-Lindel6f to #;

NTNU

» Combining||Hs(z)| < 1]|and | |Hs(re)| < 1, we get that |Hs(z)| < 1
forz e 859(5).

> Forall z € C, using | |G(2)| < e™*” |, we have the growth bound

|Hs(2)| < |ei§z2||G(2)| < d121% orlzf? < 22

> Applying Phragmeén-Lindel6f yields that | [Hs(2)| < 1|for z € Sy

for all small § > 0.



B Proof (9/12): Extend bound to G on first quadrant

NTNU

Now fix 2o € Sy /5. Since 6(0) — 7/2 as § — 0, there exists dp > 0 such
that zg € Sy(s) for all § < do.

For any ¢ > 0 we can find § < §p so small that[|e—i5z3 -1l < a]. Then

|Hs(z0)| = [€98]|G(z0)| <1 | Hy(2) = € °G(2) | [[Hs(2)| < 1

— 1G(20)| < le | <142 [Je® 1 <e)

Since e and 2z were arbitrary, we conclude that |G(z)| < 1forall z € S, 5.
The same bound holds on S5 since||G(z)| < 1]and||G(iy)| < 1]




B Proof (10/12): Modifications for second quadrant

>

vVvyVvYyVvyVyvyy

Second quadrant:

Define Hy(z) = e 9" G(z) and 6(6) = 7 — arctan (5) > m/2asd6 =0,
Still |Hs(z)| < 1 and |Hy(2)| < 27127,

Consider sector Sy = {2 € C:0(0) < argz < 7},

Along ray z = re®, |Hg(re®)| < exp (r? cos 6(r cos 6 + 25 sin 6)),

By our choice of 6(¢), it follows that | Hs(re?)| < 1,

P-L = Hj;(z) < 1for z € Sy for small enough 4,

Can extend to |G(z)| < 1 inside entire quadrant by similar
argument.

Repeat with similar modifications for the third and fourth quadrants.

|G(2)] < 1Vz



Proof (11/12): Applying Liouville’s theorem

Having shown that||G(z)| < 1Vz|and that (G is entire]. Liouville’s

theorem allows us to conclude that G is constant. Now

2 2 2

G(2)=C = F(2)=Ce ™ = f(w) =Ce ™ = f(zx)=Ce ™.




Proof (12/12): The ab > 1 case

Suppose |f(z)| < e=™** and | f(w)| < e ™** for ab > 1 and define
ag=-<—=a = |f(z)] < e ™0,
Applying the theorem with agb = 1 yields
f(z) = Ce ™07,

Combining with the original estimate |f(z)| < e=™** and ay < a yields

|f(x)| = Ce ™07 < 7Tty 0 < e emw) — 0 =,




B Weaker decay / variable exponent

NG Theorem (Hardy '33)
Let f € L(R) satisfy |f(x)] < C1(1+ |z|)¥e~™" and
|f(w)] < Ca(1 + lw|)Ne~™". Then
> ab>1 = f(z)=0,
> ab=1 = f(z)= P($)e—ax2,
where P is a polynomial with deg(P) < N.

Theorem (Cowling, Price '82)
Suppose f € S'(R) and

e 71l + [l Fll o < o0

for1 <p,q < oowhereoneofp,qis <oo. Thenifab>1, f =0.




Higher dimensional version

Obvious generalization to higher dimension also holds.

Theorem (Sitaram, Sundari, Thangavelu '94)

Let f € L2(RY) satisfy | f(x)] < Cre~™** and |f(w)| < Coe=™I*, Then
> ab>1 = f(x)=0,
> ab=1 = f(x)= Ce—alzl?,




B Schrodinger connection

The free Schrédinger equation

Oru = 1Au,
u(z,0) = up(x)

has the general solution

i|lz—y|? /4t i|z|? /4t
e e ) L
t) = R — d - 72“3'3//47& 1|y| /4t d .
u(z,t) /]Rn (drit)" uo(y) dy (drit)" /2 /Rn e e uo(y) dy

Let f(y) = e'lv/*/4y4(y), then (up to factors depending on t),

@) = luo(@),  |f(@)] = lu(z,b)].

Here we can apply Hardy!




Dynamical Hardy

Theorem (Escauriaza-Kenig-Ponce-Vega)
Let u be a solution to the free Schrodinger equation

Oru = 1Au.
Suppose that v is sufficiently smooth and satisfies
lu(z,0)] < Cre ™ |u(z,T)| < Che ™"

forsome a,b > 0. Then

> ab = u=0
ab > @nT)? u=0,
1 mati
> b= o = ulet) = Cem L

Subsequent work looked at other PDE’s and added potentials.




B Metaplectic version |

NTNU The Fourier transform can be realized as a special case of a
metaplectic operator. They can be realized as compositions of

» Standard Fourier transform f  f
» Chirp multiplication f(t) — e™@t f(t), Q symmetric
» Rescalings f(t) — | det(E)|'/2f(Et), E invertible

Includes fractional Fourier transform, chirps and Schrédinger
propagators.

Metaplectic operator S « Symplectic matrix S

S = <é g) e R A B C,D e R



Metaplectic version Il

Theorem (Cordero, Giacchi, Malinnikova '24)

Let f € L*>(R%) and S be a metaplectic operator such that the associated
block matrix B is nonzero, then if M and N are positive-semidefinite
matrices with

ker(M) = ker(B), R(N) = R(B),
f satisfies

f(x)] < Cre™™ = |SF(E)] < Crem™VEE

and the matrix M B™ N B has an eigenvalue \ > 1, then f = 0.

Enables anisotropic Hardy with regular Fourier transform!




Thank you!




