Quantum harmonic analysis in
time-frequency analysis

Simon Halvdansson
Trondheim, June 5th 2023

>
bo
o
[}
c
Es
o
@
2
o
=
©
o
v
c
o
%3
n
Y
o
>
£
1%
&
[}
=
c
=)
=
o
00
o
2
2
<}
=z




Setting the stage
B QHA from the perspective of time-frequency analysis

» This presentation is supposed to be easily digestible

» Basics of time-frequency analysis and how they relate to QHA
> Pretty pictures to keep your attention

» Breadth before depth

Heavy theoretical machinery should be
heavily motivated, let’s try!




Establishing notation
B Time-frequency shifts
Our functions f(t), called signals, are viewed as time-dependent

We move them in time by translations (7, : f(¢) — f(t — x)) and
frequency by modulations (M, : f(t) — 2™ f(t))

(2, w) f(t) = MyT,f(t) = ™ f(t — z).
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Establishing notation
B Operator translations

For translating operators, we move the function, apply the operator,
and then move back the resulting function

ay(S) =7(z)Sm(2)*".

Weyl calculus: There is an isometric isomorphism between func-
tions and operator A : L?(R??) — S?(L%(R%)). Operator transla-
tions can be viewed as Weyl symbol translation

Ar,p=a(Ay)  or  ags)(z) =as(z - 2)




Defining convolutions

QHA meta statement: Replace

» Functions — Operators g— S
» Translations — Operator translations T, — a,
> Integrals — Traces [ —tr

fxg(z /f T.4(y) dy

™~

f*xS= /de f(z)az(S) dz S T(z) = tr(Sa(T))

(Function-operator convolution) (Operator-operator convolution)

Let's investigate the connection to time-frequency analysis!




Short-time Fourier transform

In time-frequency analysis, we use time-frequency representations
of signals ¢, such as the STFT:

VWMZ) = <w,77(2>g0> = o ¢(t)m6—2ﬂiw~t dt

and its square modulus, the spectrogram:




Localization operators

The STFT V% contains all the information to reconstruct ¢ as
Y = Vo (2)m(2)p dz.
R2d
We can add a weight factor (mask, symbol) m : R?¢ — C to this

AL = /R?d m(2)Voh(2)m(2) @ dz.
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Figure: Original, mask, filtered




Why do we care about localization operators?

» Data augmentation for ML spectrogram classification -
SpecAugment by Google (2019), >2800 citations, hot stuff

» Noise reduction - filter noise by masking parts of phase space
» Ideal frequency masks - sound isolation and source separation
» + uses outside time-frequency analysis
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Figure: SpecAugment (Park et al. 2019)




B The QHA connection

NTNU

Localization operators are rank-one function-operator convolutions!
[m*(p® @)l = /de m(2) (i, w(2)o)m(2)pdz = ALY

What does this give us?
» Conditions for when {47, : m € L*} is dense in SP
» A procedure to approximate m from Ay,

» Asimple perspective on standard properties
(IAZ s> < [Im| e |l¢]|22) - which is easy to extend to wavelets

> A way to lift mask convergence to operator convergence



Properties of localization operators
» Integral of convolution is product of integrals

tr(f=S) = - (2)dz - tr(S) = tr(4%,) = - m(z) dz

» Reconstruction with constant mask
1*S:t1‘(5) 'ILQ — Af = ILQ

Weyl symbols respect convolutions:
afes =M*ag = aze =m* W(p)
where W () = apey,

Through the SVD S =" \.(¢n ® ¢4,), general function-operator
convolutions can be realized as mixed-state localization operators

m*S:anm*(gbn@(ﬁn).




From Gabor multipliers to localization operators

B A topical deep dive

Let Ao s = aZ x BZ (rectangular lattice) and i’ s = a8 e, 5 m(\)oy
(discretization), then

s+ (p @ )] = a8 Y mN V(M) m(Ne.

)\EAQVB
Letting o, 8 — 0,
Hapg* (P ®p) > mx(p®p) inSt.
——— ——
Gabor multiplier Localization operator

Proof is made much easier by considering general function-operator
convolutions and then specializing to the rank-one case.
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B Intermission

Without having to resort to internal soul-searching, we can get
operator-operator convolutions from function operator convolutions:

Adjoints:
Let Ag : LP — SP with f —
f =S, then

AG:SP — LPwithT — T % S

Weyl calculus respect con-
volutions:

SxT(z) =ag *ar(z)

(This of course also works the other way around)



Operator-operator convolutions
B Spectrograms are rank-one operator-operator convolutions!

(Y @) x (¢ @ (p)(2) = tr [(¥ @ )7 (2)(p ® )7(2)]
= [, w(2)) .
But it turns out the full-rank case is also of interest!
(W @) x5(2) = Qs(¥)(2)

This class is Cohen'’s class of quadratic time-frequency distributions

Cohen’s class was originally defined as

Qa(Y)(2) = W(¥) * @(2) = Aw(y) *x Aa(2)

S0 S = Ag and Ay () = ¢ ® ¢ via the Weyl calculus.

Obvious question: Why do we care about Cohen’s class?




Why do we care about Cohen’s class?
@ Essentially; why don’t we just always use the spectrogram?
» Other TF distributions can be more sparse, meaning separating
signals is easier
» We can give ML models access to different TF distributions to give
them more (effective) data and improve performance

» Distributions are tailored to applications

Figure: Same signal; Spectrogram, Ambiguity function and Wigner distribution




Basic properties of Cohen’s class
» Energy preserving

» S*T(z)dz = tr(S) tr(T) = - Qs()(z)dz =1

» Uncertainty principle

/Qs(w)(z)dz>1—s = [Q>1-¢
Q

» By performing a SVD on S, we see that

QS(d}) = (¢ b2 1/}) * an(¢n X d’n) = Z 5n|V¢n¢‘2

n n

» Characterized as continuous mappings L?(R%) — Cy(R??) which
respect translations




A Fourier transform

We wish to do some harmonic analysis with these distributions - hence
we need a Fourier transform

Fw(8)(2) = e ™ tr (n(—2)S),  Fw :S' — Co(R™)

Together with the symplectic Fourier transform F,, we have a
convolution theorem

Fw (f x8) = Fo(f) - Fw (S),
Fo(T  8)(2) = Fw (T)(2) - Fw (S)(2).

Weyl symbols can be realized as:
as = Fo(Fw(S)).




B Cohen’s class phase retrieval

Wigner distribution

NTNU

Questions: Does -
Qs(v) uniquely -
determine ¢?

Answer: Sometimes,
Fo(Qs()) = Fo[(w @) % 5] = Fw (v @ ¥) - Fiw (9)

so if Fi(S) is non-zero we can recover Fy (¢ ® ¢) — (1 @ ¥) — .

(Phase retrieval is basically deconvolution, explains instability)



Cohen induces mixed-state localization operators

Alternatively; op-op convolutions induce func-op convolutions

Solving the optimization problem  The corresponding Cohen’s class

problem
max / m(2)|Vi(2) 2 dz
I TR max | m(=)Qs(1)(z) dz
gives rise to localization operators W=tz
A7, via orthogonal maximizers. gives m x S.

By SVD, m % S for finite rank window operator S is a so called
multi-window localization operator




B (My) key takeaways

NG » QHA provides another lens through which time-frequency analysis
can be investigated

» With this additional lens, the number of facts which are "clear" is
strictly increased

» The fact that so much of the structure and intuition from harmonic
survives (and is useful) in this setting is remarkable!

... and QHA plays well with Weyl calculus! ]

That's it, now questions then lunch!



