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Setting the stage
QHA from the perspective of time-frequency analysis

▶ This presentation is supposed to be easily digestible
▶ Basics of time-frequency analysis and how they relate to QHA
▶ Pretty pictures to keep your attention
▶ Breadth before depth

Heavy theoretical machinery should be
heavily motivated, let’s try!
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Establishing notation
Time-frequency shifts

Our functions f(t), called signals, are viewed as time-dependent

We move them in time by translations (Tx : f(t) 7→ f(t− x)) and
frequency bymodulations (Mω : f(t) 7→ e2πiω·tf(t))

π(x, ω)f(t) =MωTxf(t) = e2πiω·tf(t− x).
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Establishing notation
Operator translations

For translating operators, we move the function, apply the operator,
and then move back the resulting function

αz(S) = π(z)Sπ(z)∗.

Weyl calculus: There is an isometric isomorphism between func-
tions and operator A : L2(R2d) → S2(L2(Rd)). Operator transla-
tions can be viewed as Weyl symbol translation

ATzf = αz(Af ) or aαz(S)(x) = aS(x− z)
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Defining convolutions
QHA meta statement: Replace
▶ Functions→ Operators g → S

▶ Translations→ Operator translations Tz → αz

▶ Integrals→ Traces
∫
→ tr

f ∗ g(z) =
∫
R2d

f(y)Tz ǧ(y) dy

f ⋆ S =

∫
R2d

f(z)αz(S) dz S ⋆ T (z) = tr(Sαz(Ť ))

(Function-operator convolution) (Operator-operator convolution)

Let’s investigate the connection to time-frequency analysis!
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Short-time Fourier transform
In time-frequency analysis, we use time-frequency representations
of signals ψ, such as the STFT:

Vφψ(z) = ⟨ψ, π(z)φ⟩ =
∫
Rd

ψ(t)φ(t− x)e−2πiω·t dt

and its square modulus, the spectrogram:
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Localization operators

The STFT Vφψ contains all the information to reconstruct ψ as

ψ =

∫
R2d

Vφψ(z)π(z)φdz.

We can add a weight factor (mask, symbol)m : R2d → C to this

Aφmψ =

∫
R2d

m(z)Vφψ(z)π(z)φdz.

Figure: Original, mask, filtered
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Why do we care about localization operators?
▶ Data augmentation for ML spectrogram classification -

SpecAugment by Google (2019), >2800 citations, hot stuff
▶ Noise reduction - filter noise by masking parts of phase space
▶ Ideal frequency masks - sound isolation and source separation
▶ + uses outside time-frequency analysis

Figure: SpecAugment (Park et al. 2019)
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The QHA connection

Localization operators are rank-one function-operator convolutions!

[m ⋆ (φ⊗ φ)]ψ =

∫
R2d

m(z)⟨ψ, π(z)φ⟩π(z)φdz = Aφmψ

What does this give us?
▶ Conditions for when {Aφm : m ∈ Lp} is dense in Sp

▶ A procedure to approximatem from Aφm

▶ A simple perspective on standard properties
(∥Aφm∥Sp ≤ ∥m∥Lp∥φ∥2L2 ) - which is easy to extend to wavelets

▶ A way to lift mask convergence to operator convergence
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Properties of localization operators
▶ Integral of convolution is product of integrals

tr(f ⋆ S) =

∫
R2d

f(z) dz · tr(S) =⇒ tr(Aφm) =

∫
R2d

m(z) dz

▶ Reconstruction with constant mask
1 ⋆ S = tr(S) · IL2 =⇒ Aφ1 = IL2

Weyl symbols respect convolutions:
af⋆S = m ∗ aS =⇒ aAφ

m
= m ∗W (φ)

whereW (φ) = aφ⊗φ

Through the SVD S =
∑

n λn(ϕn ⊗ ϕn), general function-operator
convolutions can be realized asmixed-state localization operators

m ⋆ S =
∑
n

snm ⋆ (ϕn ⊗ ϕn).
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A topical deep dive
From Gabor multipliers to localization operators

Let Λα,β = αZ× βZ (rectangular lattice) and µmα,β = αβ
∑

λ∈Λα,β
m(λ)δλ

(discretization), then[
µmα,β ⋆ (φ⊗ φ)

]
ψ = αdβd

∑
λ∈Λα,β

m(λ)Vφψ(λ)π(λ)φ.

Letting α, β → 0,

µmα,β ⋆ (φ⊗ φ)︸ ︷︷ ︸
Gabor multiplier

→ m ⋆ (φ⊗ φ)︸ ︷︷ ︸
Localization operator

in S1.

Proof is made much easier by considering general function-operator
convolutions and then specializing to the rank-one case.
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Intermission

Without having to resort to internal soul-searching, we can get
operator-operator convolutions from function operator convolutions:

Adjoints:
Let AS : Lp → Sp with f 7→
f ⋆ S, then

A∗
S : Sp → Lp with T 7→ T ⋆ S

Weyl calculus respect con-
volutions:

S ⋆ T (z) = aS ∗ aT (z)

(This of course also works the other way around)
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Operator-operator convolutions
Spectrograms are rank-one operator-operator convolutions!

(ψ ⊗ ψ) ⋆ (φ̌⊗ (φ̌)(z) = tr
[
(ψ ⊗ ψ)π(z)(φ⊗ φ)π(z)

]
= |⟨ψ, π(z)φ⟩|2.

But it turns out the full-rank case is also of interest!

(ψ ⊗ ψ) ⋆ Š(z) = QS(ψ)(z)

This class is Cohen’s class of quadratic time-frequency distributions

Cohen’s class was originally defined as

QΦ(ψ)(z) =W (ψ) ∗ Φ(z) = AW (ψ) ⋆ AΦ(z)

so S = AΦ and AW (ψ) = ψ ⊗ ψ via the Weyl calculus.

Obvious question: Why do we care about Cohen’s class?
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Why do we care about Cohen’s class?
Essentially; why don’t we just always use the spectrogram?
▶ Other TF distributions can be more sparse, meaning separating

signals is easier
▶ We can give ML models access to different TF distributions to give

them more (effective) data and improve performance
▶ Distributions are tailored to applications

Figure: Same signal; Spectrogram, Ambiguity function and Wigner distribution
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Basic properties of Cohen’s class
▶ Energy preserving∫

R2d

S ⋆ T (z) dz = tr(S) tr(T ) =⇒
∫
R2d

QS(ψ)(z) dz = 1

▶ Uncertainty principle∫
Ω
QS(ψ)(z) dz > 1− ε =⇒ |Ω| > 1− ε

▶ By performing a SVD on S, we see that

QS(ψ) = (ψ ⊗ ψ) ⋆
∑
n

sn(ϕn ⊗ ϕn) =
∑
n

sn|Vϕnψ|2

▶ Characterized as continuous mappings L2(Rd) → Cb(R2d) which
respect translations
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A Fourier transform
We wish to do some harmonic analysis with these distributions - hence
we need a Fourier transform

FW (S)(z) = e−iπx·ω tr
(
π(−z)S

)
, FW : S1 → C0(R2d)

Together with the symplectic Fourier transform Fσ, we have a
convolution theorem

FW (f ⋆ S) = Fσ(f) · FW (S),

Fσ(T ⋆ S)(z) = FW (T )(z) · FW (S)(z).

Weyl symbols can be realized as:
aS = Fσ(FW (S)).
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Cohen’s class phase retrieval

Questions: Does
QS(ψ) uniquely
determine ψ?

→

Answer: Sometimes,

Fσ(QS(ψ)) = Fσ
[
(ψ ⊗ ψ) ⋆ Š

]
= FW (ψ ⊗ ψ) · FW (Š)

so if FW (Š) is non-zero we can recover FW (ψ ⊗ ψ) → (ψ ⊗ ψ) → ψ.

(Phase retrieval is basically deconvolution, explains instability)
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Cohen induces mixed-state localization operators
Alternatively; op-op convolutions induce func-op convolutions

Solving the optimization problem

max
∥ψ∥=1

∫
R2d

m(z)|Vφψ(z)|2 dz

gives rise to localization operators
Aφm via orthogonal maximizers.

The corresponding Cohen’s class
problem

max
∥ψ∥=1

∫
R2d

m(z)QS(ψ)(z) dz

givesm ⋆ S.

By SVD, m ⋆ S for finite rank window operator S is a so called
multi-window localization operator
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(My) key takeaways

▶ QHA provides another lens through which time-frequency analysis
can be investigated

▶ With this additional lens, the number of facts which are "clear" is
strictly increased

▶ The fact that so much of the structure and intuition from harmonic
survives (and is useful) in this setting is remarkable!

... and QHA plays well withWeyl calculus!

That’s it, now questions then lunch!


