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The short version
We have seen plenty about function-operator convolutions throughout
the workshop

f ⋆ S =

∫
R2d

f(z)π(z)Sπ(z)∗ dz.

Clearly to generalize this to measure-operators convolutions, we can go
with

µ ⋆ S =

∫
R2d

π(z)Sπ(z)∗ dµ(z),

all in a day’s work!

Thank you! Questions?
Nah!
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What’s wrong?
µ ⋆ S =

∫
R2d

π(z)Sπ(z)∗ dµ(z)

It’s fine to define measure-operator convolutions this way:
▶ Define as Bochner integral - just as for function-operator

convolutions
▶ Define via Weyl symbol - allows large class of tempered

distributions

There is further happiness to gain:
▶ A "first principles" approach is nice - rederive QHA
▶ Get free properties from associated framework
▶ End goal is establishing new results outside of QHA (spoiler)
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Enabler/starting point
Abstract nonsense:

H. G. Feichtinger
A Novel Mathematical Approach to the Theory of Translation Invariant
Linear Systems
Recent Applications of Harmonic Analysis to Function Spaces, Differential
Equations, and Data Science: Novel Methods in Harmonic Analysis, Volume 2,
Springer International Publishing, Cham, 2017, pp. 483–516.

H. G. Feichtinger
Homogeneous Banach spaces as Banach convolution modules overM(G)

Mathematics, 10(3), 364, 2022, MDPI AG.
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Classical analogy I
How could your grandparents have defined convolution? Obviouslyhomogenous Banach spaces, via translations!

ρ : Rd ∋ x 7→ Tx ∈ B(L1)

The representation ρ is
▶ Linear (ρ(x)(αf + βg) = αρ(x)f + βρ(x)g)

▶ Preserves identity (ρ(0)f = f)

▶ Group homomorphism (ρ(x+ y) = ρ(x)ρ(y))

▶ Isometric (∥ρ(x)f∥L1 = ∥f∥L1)

▶ Continuous (∥ρ(x)f − f∥L1 → 0 as x→ 0)

and we say that (L1, ρ) is a homogenous Banach space.
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Classical analogy II

We can define the action ∗ρ : Rd × L1 → L1 as

∗ρ : (x, f) 7→ Txf

or, on point measures, ∗ρ : (δx, f) 7→ Txf . By some functional analysis,
this action can be extended toM(Rd)× L1 to define convolutions
between bounded measures and integrable functions.

Upside? Limited
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Operator version I

Figure: Never forget your roots

Let’s translate this to operators!
Translations→ operator translations,
functions→ operators:

ρ : R2d ∋ z 7→ αz ∈ B(S1),
αz(S) = π(z)Sπ(z)∗.

▶ Linear (ρ(z)(αS1 + βS2)) = αρ(z)S1 + βρ(z)S2)

▶ Preserves identity (ρ(0)S = S)

▶ Group homomorphism (ρ(z1z2) = ρ(z1)ρ(z2))

▶ Isometric (∥ρ(z)S∥S1 = ∥S∥S1)

▶ Continuous (∥ρ(z)S − S∥S1 → 0 as z → 0)

we say that (S1, ρ) is an abstract homogenous Banach space.
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Operator version II
Applying the same functional-analytical machinery allows us to
(uniquely) extend the mapping

∗ρ : R2d × S1 → S1, z ∗ρ S = π(z)Sπ(z)∗

to one onM(R2d)× S1 (which is bounded, bilinear, w∗-continuous and
has dense span) using BUPU’s:

µ ∗ρ S = lim
|Ψ|→0

∑
i∈IΨ

µ(ψi)δzi ∗ρ S.

We call thismeasure-operator convolutions and write ⋆ for ∗ρ.
The BUPU machinery allows us to ultimately derive the formula:

〈
(µ ⋆ S)ψ, ϕ

〉
=

∫
R2d

〈
π(z)Sπ(z)∗ψ, ϕ

〉
dµ(z).
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What now?
TODO:
We should prove that all the standard
function-operator properties hold true

←medium fun

▶ ∥µ ⋆ S∥Sp ≤ ∥µ∥M∥S∥Sp

▶ µ ⋆ S ≥ 0 if µ ≥ 0 and S ≥ 0

▶ tr(µ ⋆ S) = µ(R2d) tr(S) when S ∈ S1
▶ (µ ⋆ S)̌ = µ̌ ⋆ Š

▶ FW (µ ⋆ S) = Fσ(µ) · FW (S)

▶
...

Essentially all we can dream of is true - this makes subsequent work
easier
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Not-so-basic property
The main payoff of using this framework is essentially the following
theorem:

Theorem
Let (µα)α be a bounded and tight net which converges weak-* to µ0
and S ∈ S1, then

lim
α→∞

∥µα ⋆ S − µ0 ⋆ S∥S1 = 0.

(Recall this means that µα(f)→ µ0(f) for all f ∈M(R2d)∗ = Cb(R2d))
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Part II: Contributing to society
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The lattice setting
We are interested in cases where

µ =
∑
λ∈Λ

c(λ)δλ =⇒ µ ⋆ S =
∑
λ∈Λ

c(λ)αλ(S)

for some lattice Λ ⊂ R2d.

This is (often) the setting of discrete time-frequency analysis as it is
straightforward to implement numerically (Λ = αZd × βZd).
These operators were previously investigated by Skrettingland with the
notation c ⋆Λ S:

Eirik Skrettingland
Quantum Harmonic Analysis on Lattices and Gabor Multipliers
Journal of Fourier Analysis and Applications, 26(3), 2020, Springer.
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Mixed-state Gabor frames
Recall that (g,Λ) generates a Gabor frame when

A∥f∥2 ≤
∑
λ∈Λ
|Vgf(λ)|2 ≤ B∥f∥2 ∀f ∈ L2(Rd).

We say that (S,Λ) generates amixed-state Gabor frame when
A∥f∥2 ≤

∑
λ∈Λ
|QS(f)(λ)|2 ≤ B∥f∥2 ∀f ∈ L2(Rd).

If A = B, we have a nice reconstruction of the identity:∑
λ∈Λ

π(λ)Sπ(λ)∗f = Af ∀f ∈ L2(Rd).
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(Mixed-state) Gabor multipliers
Tight Gabor frame =⇒ recon-
struction formula

f =
∑
λ∈Λ

Vgf(λ)π(λ)g

which gives rise to Gabor multi-pliers
Gg

m,Λf =
∑
λ∈Λ

m(λ)Vgf(λ)π(λ)

with maskm.

Tight mixed-state Gabor frame
=⇒ reconstruction formula

f =
∑
λ∈Λ

π(λ)Sπ(λ)∗f

which gives rise to mixed-stateGabor multipliers
GS

m,Λf =
∑
λ∈Λ

m(λ)π(λ)Sπ(λ)∗f

with maskm.

It turns out (perhaps expectedly) that these operators behave similarly
to the usual Gabor multipliers.
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0-1 Gabor multiplier eigenvalue law
▶ The eigenvalues of localization operators famously follow a 0-1 law

where ifm = χΩ, the first ⌈|Ω|⌉ eigenvalues of Ag
Ω are close to 1 and

the remaining eigenvalues are close to 0.
▶ This is easiest to prove using QHA.
▶ With measure-operator convolutions, we can follow the same path

for mixed-state Gabor multipliers.

Theorem
Let (S,Λ) generate a tight mixed-state Gabor frame, let Ω ⊂ R2d be compact
and fix δ ∈ (0, 1). If {λRΩ

k }k are the eigenvalues of GS
RΩ,Λ, then

#
{
k : λRΩ

k > 1− δ
}

|RΩ ∩ Λ|
→ 1 as R→∞.

Painless QHA on lattices™
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Approximating localization operators
Ideally, we want our
discrete constructions
to approximate our con-
tinuous constructions in
some limit.

Define:

µmα,β = αdβd
∑

λ∈Λα,β

m(λ)δλ

where Λα,β = αZd × βZd.

Theorem
Let (µα)α be a bounded and tight net
which converges weak-* to µ0 and S ∈ S1,
then

lim
α→∞

∥µα ⋆ S − µ0 ⋆ S∥S1 = 0.

Theorem
Letm ∈W (L∞, ℓ1)(R2d) be
Riemann-integrable and S ∈ S1. Then we
have the convergence

lim
α,β→0

∥∥µm
α,β ⋆ S −m ⋆ S

∥∥
S1 = 0.

In particular, ∥Gg
m,α,β −A

g
m∥S1 → 0 as α, β → 0.
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Why does this work?
Verifying the convergence

µmα,β(f)→
∫
R2d

m(z)f(z) dz

boils down to realizing the
left-hand side

µmα,β(f) =
∑
λ∈Λ

m(λ)f(λ)αdβd

as a Riemann sum.

We also need to verify
that (µmα,β)α,β is tight and
uniformly bounded (harder
than it looks).

Theorem
Let (µα)α be a bounded and tight net
which converges weak-* to µ0 and S ∈ S1,
then

lim
α→∞

∥µα ⋆ S − µ0 ⋆ S∥S1 = 0.

Theorem
Letm ∈W (L∞, ℓ1)(R2d) be
Riemann-integrable and S ∈ S1. Then we
have the convergence

lim
α,β→0

∥∥µm
α,β ⋆ S −m ⋆ S

∥∥
S1 = 0.
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Parameter continuity
Theorem
Suppose that as n→∞,

αn → α in R2

βn → β in R2

mn → m inW (C0, ℓ
1)(Rd)

Sn → S in S1

=⇒ GSn
mn,αn,βn

→ GS
m,α,β in S1.

"Gabor multipliers are S1-continuous with respect to their parameters".
Earlier results have been limited to S2 convergence or g ∈ S(Rd).
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(Actual) Thank you!


