

Measure-operator convolutions and applications to mixed-state Gabor multipliers

QHA24 Hannover

Simon Halvdansson

joint work with Hans Feichtinger and Franz Luef, published in *Sampling Theory, Signal Processing, and Data Analysis*

The short version

We have seen plenty about function-operator convolutions throughout the workshop

$$
f \star S = \int_{\mathbb{R}^{2d}} f(z) \pi(z) S \pi(z)^* dz.
$$

Clearly to generalize this to measure-operators convolutions, we can go with

$$
\mu \star S = \int_{\mathbb{R}^{2d}} \pi(z) S \pi(z)^* d\mu(z),
$$

all in a day's work!

Thank you! Questions? Nah!

What's wrong?

$$
\mu\star S=\int_{\mathbb{R}^{2d}}\pi(z)S\pi(z)^*\,d\mu(z)
$$

It's fine to define measure-operator convolutions this way:

- ▶ Define as Bochner integral just as for function-operator convolutions
- ▶ Define via Weyl symbol allows large class of tempered distributions

There is further happiness to gain:

- ▶ A "first principles" approach is nice rederive QHA
- \blacktriangleright Get free properties from associated framework
- \triangleright End goal is establishing new results outside of QHA (spoiler)

NTNI

Enabler/starting point

Abstract nonsense:

H. G. Feichtinger

A Novel Mathematical Approach to the Theory of Translation Invariant Linear Systems

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science: Novel Methods in Harmonic Analysis, Volume 2, Springer International Publishing, Cham, 2017, pp. 483–516.

H. G. Feichtinger

Homogeneous Banach spaces as Banach convolution modules over $M(G)$ *Mathematics*, 10(3), 364, 2022, MDPI AG.

Classical analogy I

How could your grandparents have defined convolution? Obviously **homogenous Banach spaces**, via translations!

$$
\rho : \mathbb{R}^d \ni x \mapsto T_x \in B(L^1)
$$

The representation ρ is

- \triangleright Linear $(\rho(x)(\alpha f + \beta g) = \alpha \rho(x) f + \beta \rho(x) g)$
- **•** Preserves identity $(\rho(0)f = f)$
- ▶ Group homomorphism $(\rho(x + y) = \rho(x)\rho(y))$
- ▶ Isometric $(\|\rho(x)f\|_{L^1} = \|f\|_{L^1})$
- ▶ Continuous ($||\rho(x)f f||_{L^1} \to 0$ as $x \to 0$)

and we say that (L^1, ρ) is a homogenous Banach space.

Classical analogy II

We can define the action $*_\rho:\mathbb{R}^d\times L^1\to L^1$ as

 $*_o : (x, f) \mapsto T_x f$

or, on point measures, $*_\rho : (\delta_x, f) \mapsto T_x f$. By **some functional analysis**, this action can be extended to $M(\mathbb{R}^d)\times L^1$ to define convolutions between bounded measures and integrable functions.

Upside? Limited

Operator version I

Let's translate this to operators!

Translations \rightarrow operator translations, functions \rightarrow operators:

$$
\rho : \mathbb{R}^{2d} \ni z \mapsto \alpha_z \in B(\mathcal{S}^1),
$$

$$
\alpha_z(S) = \pi(z)S\pi(z)^*.
$$

Figure: Never forget your roots

- \triangleright Linear $(\rho(z)(\alpha S_1 + \beta S_2)) = \alpha \rho(z)S_1 + \beta \rho(z)S_2$
- **•** Preserves identity $(\rho(0)S = S)$
- **Group homomorphism** $(\rho(z_1z_2) = \rho(z_1)\rho(z_2))$
- ▶ Isometric $(\|\rho(z)S\|_{S^1} = \|S\|_{S^1})$
- ▶ Continuous ($||\rho(z)S S||_{S^1} \to 0$ as $z \to 0$)

we say that (\mathcal{S}^1,ρ) is an **abstract homogenous Banach space**.

7 / 19

NTNI

NTNI

Operator version II

Applying the same functional-analytical machinery allows us to (uniquely) extend the mapping

$$
*_\rho : \mathbb{R}^{2d} \times \mathcal{S}^1 \to \mathcal{S}^1, \qquad z *_\rho S = \pi(z)S\pi(z)^*
$$

to one on $M(\mathbb{R}^{2d})\times \mathcal{S}^1$ (which is bounded, bilinear, w^* -continuous and has dense span) using BUPU's:

$$
\mu *_{\rho} S = \lim_{|\Psi| \to 0} \sum_{i \in I_{\Psi}} \mu(\psi_i) \delta_{z_i} *_{\rho} S.
$$

We call this **measure-operator convolutions** and write \star for \star_o .

The BUPU machinery allows us to ultimately derive the formula:

$$
\langle (\mu \star S) \psi, \phi \rangle = \int_{\mathbb{R}^{2d}} \langle \pi(z) S \pi(z)^* \psi, \phi \rangle d\mu(z).
$$

What now?

▶

TODO:

We should prove that all the standard function-operator properties hold true

← medium fun

- $\blacktriangleright \|\mu \star S\|_{S^p} \leq \|\mu\|_M \|S\|_{S^p}$
- \blacktriangleright $\mu \star S > 0$ if $\mu > 0$ and $S > 0$
- \blacktriangleright tr($\mu * S$) = $\mu(\mathbb{R}^{2d})$ tr(S) when $S \in S^1$

$$
\blacktriangleright (\mu \star S)\check{} = \check\mu \star \check S
$$

. . .

 \blacktriangleright $\mathcal{F}_W(\mu \star S) = \mathcal{F}_\sigma(\mu) \cdot \mathcal{F}_W(S)$

Essentially all we can dream of is true - this makes subsequent work easier

Not-so-basic property

The main payoff of using this framework is essentially the following theorem:

Theorem

Let $(\mu_{\alpha})_{\alpha}$ *be a bounded and tight net which converges weak-* to* μ_0 and $S \in \mathcal{S}^1$, then

$$
\lim_{\alpha \to \infty} \|\mu_{\alpha} \star S - \mu_0 \star S\|_{S^1} = 0.
$$

(Recall this means that $\mu_\alpha(f) \to \mu_0(f)$ for all $f \in M(\mathbb{R}^{2d})^* = C_b(\mathbb{R}^{2d})$)

10 / 19

Part II: Contributing to society

The lattice setting

We are interested in cases where

$$
\mu = \sum_{\lambda \in \Lambda} c(\lambda) \delta_{\lambda} \implies \mu \star S = \sum_{\lambda \in \Lambda} c(\lambda) \alpha_{\lambda}(S)
$$

for some lattice $\Lambda \subset \mathbb{R}^{2d}.$

This is (often) the setting of discrete time-frequency analysis as it is straightforward to implement numerically ($\Lambda=\alpha\mathbb{Z}^d\times\beta\mathbb{Z}^d$).

These operators were previously investigated by Skrettingland with the notation $c \star \Lambda S$:

Eirik Skrettingland

Quantum Harmonic Analysis on Lattices and Gabor Multipliers *Journal of Fourier Analysis and Applications*, 26(3), 2020, Springer.

Mixed-state Gabor frames

Recall that (g,Λ) generates a **Gabor frame** when

$$
A||f||^2 \le \sum_{\lambda \in \Lambda} |V_g f(\lambda)|^2 \le B||f||^2 \qquad \forall f \in L^2(\mathbb{R}^d).
$$

We say that (S,Λ) generates a *mixed-state* **Gabor frame** when

$$
A||f||^2 \le \sum_{\lambda \in \Lambda} |Q_S(f)(\lambda)|^2 \le B||f||^2 \qquad \forall f \in L^2(\mathbb{R}^d).
$$

If $A = B$, we have a nice reconstruction of the identity:

$$
\sum_{\lambda \in \Lambda} \pi(\lambda) S \pi(\lambda)^* f = Af \qquad \forall f \in L^2(\mathbb{R}^d).
$$

13 / 19

(Mixed-state) Gabor multipliers

Tight Gabor frame \implies reconstruction formula

$$
f = \sum_{\lambda \in \Lambda} V_g f(\lambda) \pi(\lambda) g
$$

which gives rise to **Gabor multipliers**

$$
G_{m,\Lambda}^g f = \sum_{\lambda \in \Lambda} m(\lambda) V_g f(\lambda) \pi(\lambda)
$$

with mask m .

Tight mixed-state Gabor frame \implies reconstruction formula

$$
f = \sum_{\lambda \in \Lambda} \pi(\lambda) S \pi(\lambda)^* f
$$

which gives rise to *mixed-state* **Gabor multipliers**

$$
G_{m,\Lambda}^S f = \sum_{\lambda \in \Lambda} m(\lambda) \pi(\lambda) S \pi(\lambda)^* f
$$

with mask m .

It turns out (perhaps expectedly) that these operators behave similarly to the usual Gabor multipliers.

0-1 Gabor multiplier eigenvalue law

- \triangleright The eigenvalues of localization operators famously follow a 0-1 law where if $m=\chi_{\Omega}$, the first $\lceil |\Omega| \rceil$ eigenvalues of A^g_{Ω} $\frac{g}{\Omega}$ are close to 1 and the remaining eigenvalues are close to 0.
- ▶ This is easiest to prove using QHA.
- \triangleright With measure-operator convolutions, we can follow the same path for mixed-state Gabor multipliers.

Theorem

Let (S,Λ) *generate a tight mixed-state Gabor frame, let* Ω ⊂ R ²^d *be compact* and fix $\delta \in (0,1)$. If $\{\lambda_k^{R\Omega}\}_k$ are the eigenvalues of $G^S_{R\Omega,\Lambda}$, then

$$
\frac{\#\{k:\lambda_k^{\rm R\Omega}>1-\delta\}}{|R\Omega\cap\Lambda|}\to 1 \quad \text{as } R\to\infty.
$$

Painless QHA on lattices™

NTNI

16

Approximating localization operators

Ideally, we want our discrete constructions to approximate our continuous constructions in some limit.

Define:

$$
\mu_{\alpha,\beta}^m = \alpha^d \beta^d \sum_{\lambda \in \Lambda_{\alpha,\beta}} m(\lambda) \delta_\lambda
$$

where
$$
\Lambda_{\alpha,\beta} = \alpha \mathbb{Z}^d \times \beta \mathbb{Z}^d
$$
.

Theorem

Let $(\mu_{\alpha})_{\alpha}$ *be a bounded and tight net* which converges weak-* to μ_0 and $S \in \mathcal{S}^1$, *then*

$$
\lim_{\alpha \to \infty} ||\mu_{\alpha} \star S - \mu_0 \star S||_{S^1} = 0.
$$

Theorem

 α

Let $m \in W(L^{\infty}, \ell^1)(\mathbb{R}^{2d})$ be $Riemann-integrable$ and $S \in \mathcal{S}^1$. Then we *have the convergence*

$$
\lim_{\beta \to 0} ||\mu_{\alpha,\beta}^m \star S - m \star S||_{S^1} = 0.
$$

$$
\text{In particular, } \|G_{m,\alpha,\beta}^g - A_m^g\|_{\mathcal{S}^1} \to 0 \text{ as } \alpha, \beta \to 0.
$$

17 / 19

Why does this work?

Verifying the convergence

$$
\mu_{\alpha,\beta}^m(f) \to \int_{\mathbb{R}^{2d}} m(z) f(z) \, dz
$$

boils down to realizing the left-hand side

 $\mu_{\alpha,\beta}^m(f)=\sum m(\lambda)f(\lambda)\alpha^d\beta^d$ λ∈Λ

as a Riemann sum.

We also need to verify that $(\mu_{\alpha,\beta}^m)_{\alpha,\beta}$ is tight and uniformly bounded (harder than it looks).

Theorem

Let $(\mu_{\alpha})_{\alpha}$ *be a bounded and tight net* which converges weak-* to μ_0 and $S \in \mathcal{S}^1$, *then*

$$
\lim_{\alpha \to \infty} \|\mu_{\alpha} \star S - \mu_0 \star S\|_{\mathcal{S}^1} = 0.
$$

Theorem

Let $m \in W(L^{\infty}, \ell^1)(\mathbb{R}^{2d})$ be $Riemann-integrable$ and $S \in \mathcal{S}^1.$ Then we *have the convergence*

$$
\lim_{\alpha,\beta \to 0} ||\mu_{\alpha,\beta}^m \star S - m \star S||_{\mathcal{S}^1} = 0.
$$

Parameter continuity

"Gabor multipliers are S 1 *-continuous with respect to their parameters".* Earlier results have been limited to \mathcal{S}^2 convergence or $g \in \mathcal{S}(\mathbb{R}^d).$

(Actual) Thank you!