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Introduction

A square integrable representation of a locally compact group induces a natural notion of function-operator and operator-operator convolutions. These generalize the convolutions defined in Werner’s theory
of quantum harmonic analysis on phase space. As a result, we can deduce properties of localization operators, Cohen’s class distributions and related objects using a common framework since these can be
realized as convolutions. These convolutions have recently been studied in the case where the representation corresponds to time-frequency shifts and time-scale shifts but not in the more general setting of
locally compact groups.

In the left column we collect some general properties while in the right column we state the main results.

Basics of quantum harmonic analysis

Quantum harmonic analysis, introduced in Werner 1984, is focused on extending results from
harmonic analysis to the operator setting with the Schatten p-class of operators replacing the Lp
space of functions. This convention goes hand in hand with letting traces replace integrals for
measuring the ”size” of an operator. To translate operators and generalize the classical translation
Txf (t) = f (t− x), the operator translation

αz(S) = π(z)∗Sπ(z)

is defined, where π is the standard time-frequency representation. This in turns allows us to define
convolutions between functions and operators and operators and operators as

f ⋆ S =

∫
R2d
f (z)αz(S) dz, T ⋆ S(z) = tr(Tαz(S)).

It turns out that this is a very fruitful approach both for simplifying classical theorems and showing
new connections.

Key definitions

In the locally compact setting, we let G denote an arbitrary locally compact group with square
integrable representation σ : G→ U(H) where H is a Hilbert space and µr is the right Haar
measure. Let f ∈ L1

r(G), S ∈ S1 and T ∈ B(H), we then define
Function-operator convolution:

f ⋆G S =

∫
G
f (x)σ(x)∗Sσ(x) dµr(x)

Operator-operator convolution:
T ⋆G S(x) = tr(Tσ(x)∗Sσ(x))

Connection to time-frequency analysis

Much, but not all, of the utility of quantum harmonic analysis comes from its connection to
time-frequency analysis. This comes mainly in the form of the following two objects.

Localization operators: When S = φ1 ⊗ φ2, the function-operator convolution f ⋆G S is
precisely the localization operator Aφ1,φ2

f . The generalization to arbitrary trace-class S is known
as mixed-state localization operators or multiwindow STFT multipliers.
Cohen’s class distributions: When T = ψ ⊗ ϕ, the operator-operator convolution T ⋆G S is
precisely the Cohen’s class distribution

QS(ψ, ϕ)(z) = (ψ ⊗ ϕ) ⋆G S(x).

In particular, when S is a rank-one operator we recover the spectrogram.

Admissibility of operators

Integrability of operator-operator convolutions is key to all results which generalize results built on
Moyal’s identity. In the locally compact setting, this means generalizing the Duflo-Moore
orthogonality relations. If D−1 is the Duflo-Moore operator, then∫

G
T ⋆G S(x) dµr(x) = tr(T ) tr(D−1SD−1).

Operators S ∈ S1 which satisfy D−1SD−1 ∈ S1 are said to be admissible.

A general operator S =
∑

n snξn⊗ ξn is admissible if and only if each ξn is admissible in the sense
of Duflo-Moore and ∑

n

sn‖D−1ξn‖2 <∞.

Motivating examples of locally compact groups

Quantum harmonic analysis is usually carried out on the Weyl-Heisenberg groups and was recently
extended to the affine group in Berge et al. 2022. We list some motivating examples of why we
want to extend quantum harmonic analysis to arbitrary locally compact groups with square
integrable representations.

Affine group Aff = (R× R+, ·Aff), with the square integrable representation
π(x, a)f (t) = e2πixtψ(at)

and Haar measures dµℓ(x, a) = dx da
a2 , dµr(x, a) =

dx da
a .

Shearlet group S = (R+ × R× R2, ·S), with the square integrable representation
π(a, s, x)ψ(t) = TxDSsAa

ψ(t) = a−3/4ψ
(
A−1
a S

−1
s (t− x)

)
and Haar measures dµℓ(a, s, x) = da ds dx

a3 , dµr(a, s, x) =
da ds dx

a .
Similitude group SIM (2) = (R+ × R2 × SO(2), ·SIM (2)), with the square integrable
representation

π(a, x, θ)ψ(t) = a−1ψ
(
τ−θ

(t− x

a

))
and Haar measures dµℓ(a, x, θ) = da dx dθ

a3 , dµr(a, x, θ) =
da dx dθ

a .
Higher dimensional analogues. Both the shearlet and similitude groups have higher
dimensional analogues which give rise to square integrable representations.

Interpolated convolution mapping properties

Both function-operator and operator-operator convolutions satisfy generalizations of Young’s
inequality. In the following, 1

p +
1
q = 1 and the membership of f, S, T is differs betwen inequalities.

‖f ⋆G S‖Sp ≤ ‖f‖L1
r(G)

‖S‖Sp,
‖f ⋆G S‖Sp ≤ ‖f‖Lpr(G)‖S‖

1/p
S1 ‖D−1SD−1‖1/qS1 ,

‖T ⋆G S‖L∞(G) ≤ ‖S‖Sp‖T‖Sq,
‖T ⋆G S‖Lpr(G) ≤ ‖T‖Sp‖S‖1/qS1 ‖D−1SD−1‖1/pS1 .

The second and fourth inequality requires that S is admissible. Moreover, if S is admissible,
then the (bounded) mappings

AS : Lpr(G) → Sp, f 7→ f ⋆G S,

BS : Sp → Lpr(G), T 7→ T ⋆G S

are adjoints of each other.

Eigenvalues of mixed-state affine localization operators

Mixed-state localization operators are a higher dimensional analogue of localization operators,
defined for S =

∑
n snφn ⊗ φn and a subset Ω ⊂ G as

χΩ ⋆ S =
∑
n

snAφn
Ω

where Aφn
Ω is a classical localization operators. We are able to prove the following result on the

eigenvalues of such operators.

Theorem:
Let S be an admissible trace-class operator with tr(D−1SD−1) = 1 on L2(R+), let Ω ⊂ Aff be a
compact domain and fix δ ∈ (0, 1). If

{
λRΩk

}
k

are the non-zero eigenvalues of χRΩ⋆AffS, then
#
{
k : λRΩk > 1− δ

}
tr(S)µr(RΩ)

→ 1 as R → ∞.

Berezin-Lieb inequalities

Fix a positive T ∈ S1 and let S ∈ S1 be admissible. If Φ is a non-negative, convex and
continuous function on a domain containing the spectrum of tr(S)T and the range of T ⋆G S, then∫

G
Φ ◦ (T ⋆G S)(x) dµr(x) ≤ tr

(
Φ(tr(S)T

)tr(D−1SD−1)

tr(S)

Similarly, if S ∈ S1 is positive and admissible, f ∈ L∞(G) is non-negative and Φ is a
non-negative, convex, and continuous function on a domain containing the spectrum of f ⋆G S
and the range of tr(D−1SD−1)f , then

tr(Φ(f ⋆G S)) ≤
tr(S)

tr(D−1SD−1)

∫
G
Φ
(
tr(D−1SD−1)f (x)

)
dµr(x).

Wiener’s Tauberian theorem

We first make the following two definitions:
A function g ∈ Lpr(G) is said to be p-regular if

span
{
g(· x−1)

}
x∈G = Lpr(G).

Similarly, an operator S ∈ Sp is said to be p-regular if
span

{
σ(x)∗Sσ(x)

}
x∈G = Sp.

Now assume that there exists an admissible operator R ∈ S1 such that R ⋆G R is regular, let
S ∈ Sp be admissible, 1 ≤ p ≤ ∞ and let q be the conjugate exponent of p. Then the following
are equivalent:

1 S is p-regular,
2 If f ∈ Lqr(G) and f ⋆G S = 0, then f = 0,
3 Sp ⋆G S is dense in Lpr(G),
4 If T ∈ Sq and T ⋆G S = 0, then T = 0,
5 Lpr(G) ⋆G S is dense in Sp,
6 S ⋆G S is p-regular,
7 For any regular T ∈ S1, T ⋆G S is p-regular.
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