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Introduction

If we want to spread out a signal in time and frequency, a reasonable approach is to convolve the STFT of the signal with some kernel and then synthesize a new signal:

Bφ
µψ = V ∗

φ (µ ∗ Vφψ) =
∫
R2d
µ ∗ Vφψ(z)π(z)φdz.

Famously, time-frequency localization operators work the same way with a multiplication instead of a convolution. In this work, we study the analytical properties of this
time-frequency blurring operator and its possible utility as a tool for data augmentation.

THEORY:

Motivation

The action of modifying the phase-space representation of a function and then synthesizing a
signal back is well-known in time-frequency analysis, this is essentially what a localization operator
Aφ
m : ψ 7→ V ∗

φ (m · Vφψ) does. Apart from multiplication, convolution is a standard way to
combine two functions which has a lot of structure so we choose to put this operation in between
the analysis and synthesis. Investigating the analytic properties of this operator, as one does for
localization operators, is interesting and we make the case that the operator also has value from
an applied point of view also (see the right column).

Example

Original: Modified:

Figure 1. Spectrograms in the “modified” column have had a discrete time-frequency blurring
operator with Gaussian kernel applied to them.

Deep filtering/position-dependent kernel

Several traditional machine learning noise reduction techniques have used the pipeline

ψnoisy Vφψnoisy m Aφ
mψnoisy

STFT Neural network Apply

with the neural network trained with a loss functions like∥∥|VφAφ
mψnoisy| − |Vφψclean|

∥∥.
Recently, this approach was generalized under the name Deep Filtering where the network
instead learned a filter for each time-frequency bin. The continuous version of this can be written
as the convolution

F (z) = (µz ∗ Vφψ)(z)
where the kernel µz ∈ L1(R2d) depends on z. Consequently, the full version of their filtering can
be written as

Bφ
µψ =

∫
R2d
µz ∗ Vφψ(z)π(z)φdz

where we use a bold µ to indicate that it is a function on double phase space µ(z, w) = µz(w).
In the Deep Filtering papers, the neural network learns the mapping Vφψnoisy 7→ µ.

Analytical properties

Boundedness:
We can prove boundedness of the operator between a few standard spaces, mainly using Young’s
inequality and standard results from time-frequency analysis:

‖Bφ
µψ‖L2 ≤ ‖µ‖L1‖φ‖2L2‖ψ‖L2,

‖Bφ
µψ‖L∞ ≲ ‖µ‖L1‖φ‖L∞‖ψ‖M1,

‖Bφ
µψ‖M r ≲ ‖µ‖Lp‖ψ‖M q, 1

p +
1
q = 1 + 1

r,
‖Bφ

µψ‖Lp ≲ ‖µ‖L1‖ψ‖Mp, 1 ≤ p ≤ 2,
µ ∈ S(R2d), φ ∈ S(Rd), ψ ∈ S(Rd) =⇒ Bφ

µψ ∈ S(Rd).
Non-compactness:
If Bφ

µ is not the zero operator, it is non-compact. This also means that a convolution operator on
the Gabor space Vφ(L2) is non-compact
Positivity:
If µ̂ ≥ 0, Bφ

µ is a positive operator, however the implication does not go both ways.
Zeroness:
There exists non-zero µ, φ such that Bφ

µ is the zero operator. This is achieved by choosing µ, φ
such that supports are disjoint in the Fourier domain.

APPLICATION:

Data augmentation for machine learning

If we have a limited data set and want to train a machine learning system on the data, we often
employ data augmentation to create augmented versions of our data to give the system more
examples to learn from.
Many systems that work on signals use the spectrogram |Vφψ|2 as input and then use computer
vision systems to e.g. classify a signal, transcribe audio, output a mask for noise reduction or
source separation. Standard methods to augment signals include:

Adding white noise
Mixup: Linearly combine two signals αψ + (1− α)ϕ and modify the label accordingly
CutMix: Cut up and mix two signals χΩψ + (1− χΩ)ϕ and modify the label accordingly
SpecAugment: Probably most used method, a form of structured dropout which randomly
drops frequency bands and mutes audio for selected intervals
Room Impulse Response: Convolve waveform with a predefined impulse response to simulate
the effect of being in an echoey room

We propose the blurring operator Bφ
µ as an additional technique.

Spectrogram blurring

We can achieve a similar type of blurring by ignoring the phase component and just blurring the
spectrogram. Generally, the phase of the noisier parts of a signal has less structure meaning that
they are suppressed when taking an average which is not the case for spectrogram blurring. We
include this simpler (albeit less amenable to time-frequency analysis methods) operation in our
comparison below.

Experimental setup

We choose a simple task to test the effectiveness of the augmentation. 1 second audio recordings
are to be classified as one of 35 classes and we limit the amount of training data to
100/300/600/1000 examples per class. We use two standard architectures for this; one
convolutional neural network (CNN) and one vision transformer (ViT), which both take a log-mel
spectrogram as input as this is a standard way to solve this problem. Networks are trained many
times to average out the randomness in the test accuracy. We repeat the training procedure for
different augmentation setups and number of training examples thousands of times in total,
contributing non-trivially to my home electricity bill.

Figure 2. Log-mel spectrograms of an audio recording from the SpeechCommands V2 dataset
with different augmentation techniques applied to it.

Results (vision transformer)

Table 1. Average accuracy on the test set along with standard errors.
Augmentation Acc-100 Acc-300 Acc-600 Acc-1000
None 25.85± 0.29 71.15± 0.46 84.32± 0.23 89.17± 0.20
White noise 41.64± 0.32 80.84± 0.22 87.94± 0.15 90.72± 0.09
SpecAugment 46.97± 0.33 81.26± 0.22 87.55± 0.08 90.61± 0.14
STFT-blur 50.46± 0.28 81.00± 0.24 87.56± 0.18 90.40± 0.15
SpecBlur 52.67± 0.30 84.08± 0.14 89.00± 0.12 91.29± 0.13
White noise + SpecAug 56.61± 0.33 84.46± 0.15 89.61± 0.15 91.80± 0.15
STFT-blur + SpecBlur 67.54± 0.29 85.65± 0.16 89.22± 0.17 91.72± 0.12
All 73.38± 0.19 86.89± 0.14 90.60± 0.13 92.70± 0.08
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